Files
PythonRobotics/SLAM/GraphBasedSLAM/graph_based_slam.py
2018-03-28 21:51:42 -07:00

318 lines
7.9 KiB
Python

"""
Graph based SLAM example
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import copy
import itertools
import matplotlib.pyplot as plt
# Simulation parameter
Qsim = np.diag([0.2, math.radians(1.0)])**2
Rsim = np.diag([0.1, math.radians(10.0)])**2
DT = 2.0 # time tick [s]
SIM_TIME = 100.0 # simulation time [s]
MAX_RANGE = 30.0 # maximum observation range
STATE_SIZE = 3 # State size [x,y,yaw]
# Covariance parameter of Graph Based SLAM
C_SIGMA1 = 0.1
C_SIGMA2 = 0.1
C_SIGMA3 = math.radians(1.0)
MAX_ITR = 20 # Maximum iteration
show_graph_dtime = 20.0 # [s]
show_animation = True
class Edge():
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0
def cal_observation_sigma(d):
sigma = np.zeros((3, 3))
sigma[0, 0] = C_SIGMA1**2
sigma[1, 1] = C_SIGMA2**2
sigma[2, 2] = C_SIGMA3**2
return sigma
def calc_rotational_matrix(angle):
Rt = np.matrix([[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1.0]])
return Rt
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, phi1, d2, angle2, phi2, t1, t2):
edge = Edge()
tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
hyaw = phi1 - phi2 + angle1 - angle2
edge.e[2, 0] = pi_2_pi(yaw2 - yaw1 - hyaw)
Rt1 = calc_rotational_matrix(tangle1)
Rt2 = calc_rotational_matrix(tangle2)
sig1 = cal_observation_sigma(d1)
sig2 = cal_observation_sigma(d2)
edge.omega = np.linalg.inv(Rt1 * sig1 * Rt1.T + Rt2 * sig2 * Rt2.T)
edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2
return edge
def calc_edges(xlist, zlist):
edges = []
cost = 0.0
zids = list(itertools.combinations(range(len(zlist)), 2))
for (t1, t2) in zids:
x1, y1, yaw1 = xlist[0, t1], xlist[1, t1], xlist[2, t1]
x2, y2, yaw2 = xlist[0, t2], xlist[1, t2], xlist[2, t2]
if zlist[t1] is None or zlist[t2] is None:
continue # No observation
for iz1 in range(len(zlist[t1][:, 0])):
for iz2 in range(len(zlist[t2][:, 0])):
if zlist[t1][iz1, 3] == zlist[t2][iz2, 3]:
d1 = zlist[t1][iz1, 0]
angle1, phi1 = zlist[t1][iz1, 1], zlist[t1][iz1, 2]
d2 = zlist[t2][iz2, 0]
angle2, phi2 = zlist[t2][iz2, 1], zlist[t2][iz2, 2]
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, phi1, d2, angle2, phi2, t1, t2)
edges.append(edge)
cost += (edge.e.T * edge.omega * edge.e)[0, 0]
print("cost:", cost, ",nedge:", len(edges))
return edges
def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.matrix([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, -1.0]])
t2 = edge.yaw2 + edge.angle2
B = np.matrix([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 1.0]])
return A, B
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T * edge.omega * A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T * edge.omega * B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T * edge.omega * A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T * edge.omega * B
b[id1:id1 + STATE_SIZE, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + STATE_SIZE, 0] += (B.T * edge.omega * edge.e)
return H, b
def graph_based_slam(x_init, hz):
print("start graph based slam")
zlist = copy.deepcopy(hz)
zlist.insert(1, zlist[0])
x_opt = copy.deepcopy(x_init)
nt = x_opt.shape[1]
n = nt * STATE_SIZE
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, zlist)
H = np.matrix(np.zeros((n, n)))
b = np.matrix(np.zeros((n, 1)))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
dx = - np.linalg.inv(H).dot(b)
for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = dx.T.dot(dx)
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
return x_opt
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 4)))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = pi_2_pi(math.atan2(dy, dx))
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, anglen, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
ud = np.matrix([ud1, ud2]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.matrix([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F * x + B * u
return x
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0],
[-5.0, 5.0, 0.0]
])
# State Vector [x y yaw v]'
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
# history
hxTrue = xTrue
hxDR = xTrue
hz = []
dtime = 0.0
while SIM_TIME >= time:
time += DT
dtime += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
hz.append(z)
if dtime >= show_graph_dtime:
x_opt = graph_based_slam(hxDR, hz)
dtime = 0.0
if show_animation:
plt.cla()
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(x_opt[0, :]).flatten(),
np.array(x_opt[1, :]).flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)
if __name__ == '__main__':
main()