Files
PythonRobotics/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py
2017-06-18 18:39:52 -07:00

218 lines
5.0 KiB
Python

#! /usr/bin/python
"""
Path tracking simulation with pure pursuit steering control and PID speed control.
author: Atsushi Sakai
"""
# import numpy as np
import math
import matplotlib.pyplot as plt
import unicycle_model
from pycubicspline import pycubicspline
Kp = 1.0 # speed propotional gain
Lf = 1.0 # look-ahead distance
# animation = True
animation = False
def PIDControl(target, current):
a = Kp * (target - current)
return a
def pure_pursuit_control(state, cx, cy, pind):
ind = calc_target_index(state, cx, cy)
if pind >= ind:
ind = pind
# print(pind, ind)
if ind < len(cx):
tx = cx[ind]
ty = cy[ind]
else:
tx = cx[-1]
ty = cy[-1]
ind = len(cx) - 1
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
if state.v < 0: # back
alpha = math.pi - alpha
# if alpha > 0:
# alpha = math.pi - alpha
# else:
# alpha = math.pi + alpha
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
return delta, ind
def calc_target_index(state, cx, cy):
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
L = 0.0
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind + 1] - cx[ind]
dy = cx[ind + 1] - cx[ind]
L += math.sqrt(dx ** 2 + dy ** 2)
ind += 1
return ind
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
T = 500.0 # max simulation time
goal_dis = 0.3
stop_speed = 0.05
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
# lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind = calc_target_index(state, cx, cy)
while T >= time:
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
ai = PIDControl(speed_profile[target_ind], state.v)
state = unicycle_model.update(state, ai, di)
if abs(state.v) <= stop_speed:
target_ind += 1
time = time + unicycle_model.dt
# check goal
dx = state.x - goal[0]
dy = state.y - goal[1]
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
print("Goal")
break
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if target_ind % 20 == 0 and animation:
plt.cla()
plt.plot(cx, cy, "-r", label="course")
plt.plot(x, y, "ob", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("speed:" + str(round(state.v, 2)) +
"tind:" + str(target_ind))
plt.pause(0.0001)
return t, x, y, yaw, v
def set_stop_point(target_speed, cx, cy, cyaw):
speed_profile = [target_speed] * len(cx)
d = []
direction = 1.0
# Set stop point
for i in range(len(cx) - 1):
dx = cx[i + 1] - cx[i]
dy = cy[i + 1] - cy[i]
td = math.sqrt(dx ** 2.0 + dy ** 2.0)
d.append(td)
dyaw = cyaw[i + 1] - cyaw[i]
switch = math.pi / 4.0 <= dyaw < math.pi / 2.0
if switch:
direction *= -1
if direction != 1.0:
speed_profile[i] = - target_speed
else:
speed_profile[i] = target_speed
if switch:
speed_profile[i] = 0.0
speed_profile[0] = 0.0
speed_profile[-1] = 0.0
d.append(d[-1])
return speed_profile, d
def calc_speed_profile(cx, cy, cyaw, target_speed):
speed_profile, d = set_stop_point(target_speed, cx, cy, cyaw)
# flg, ax = plt.subplots(1)
# plt.plot(speed_profile, "-r")
# plt.show()
return speed_profile
def main():
print("rear wheel feedback tracking start!!")
ax = [0.0, 6.0, 12.5, 5.0, 7.5, 3.0, -1.0]
ay = [0.0, 0.0, 5.0, 6.5, 0.0, 5.0, -2.0]
goal = [ax[-1], ay[-1]]
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
target_speed = 10.0 / 3.6
sp = calc_speed_profile(cx, cy, cyaw, target_speed)
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, sp, goal)
flg, _ = plt.subplots(1)
print(len(ax), len(ay))
plt.plot(ax, ay, "xb", label="input")
plt.plot(cx, cy, "-r", label="spline")
plt.plot(x, y, "-g", label="tracking")
plt.grid(True)
plt.axis("equal")
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.legend()
flg, ax = plt.subplots(1)
plt.plot(s, [math.degrees(iyaw) for iyaw in cyaw], "-r", label="yaw")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("yaw angle[deg]")
flg, ax = plt.subplots(1)
plt.plot(s, ck, "-r", label="curvature")
plt.grid(True)
plt.legend()
plt.xlabel("line length[m]")
plt.ylabel("curvature [1/m]")
plt.show()
if __name__ == '__main__':
main()