Files
PythonRobotics/PathPlanning/InformedRRTStar/informed_rrt_star.py
Atsushi Sakai 76b0d04a3c using pathlib based local module import (#722)
* using pathlib based local module import

* remove unused import
2022-09-11 07:21:37 +09:00

361 lines
12 KiB
Python

"""
Informed RRT* path planning
author: Karan Chawla
Atsushi Sakai(@Atsushi_twi)
Reference: Informed RRT*: Optimal Sampling-based Path planning Focused via
Direct Sampling of an Admissible Ellipsoidal Heuristic
https://arxiv.org/pdf/1404.2334.pdf
"""
import sys
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
import copy
import math
import random
import matplotlib.pyplot as plt
import numpy as np
from utils.angle import rot_mat_2d
show_animation = True
class InformedRRTStar:
def __init__(self, start, goal,
obstacleList, randArea,
expandDis=0.5, goalSampleRate=10, maxIter=200):
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.min_rand = randArea[0]
self.max_rand = randArea[1]
self.expand_dis = expandDis
self.goal_sample_rate = goalSampleRate
self.max_iter = maxIter
self.obstacle_list = obstacleList
self.node_list = None
def informed_rrt_star_search(self, animation=True):
self.node_list = [self.start]
# max length we expect to find in our 'informed' sample space,
# starts as infinite
cBest = float('inf')
solutionSet = set()
path = None
# Computing the sampling space
cMin = math.sqrt(pow(self.start.x - self.goal.x, 2)
+ pow(self.start.y - self.goal.y, 2))
xCenter = np.array([[(self.start.x + self.goal.x) / 2.0],
[(self.start.y + self.goal.y) / 2.0], [0]])
a1 = np.array([[(self.goal.x - self.start.x) / cMin],
[(self.goal.y - self.start.y) / cMin], [0]])
e_theta = math.atan2(a1[1], a1[0])
# first column of identity matrix transposed
id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
M = a1 @ id1_t
U, S, Vh = np.linalg.svd(M, True, True)
C = np.dot(np.dot(U, np.diag(
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])),
Vh)
for i in range(self.max_iter):
# Sample space is defined by cBest
# cMin is the minimum distance between the start point and the goal
# xCenter is the midpoint between the start and the goal
# cBest changes when a new path is found
rnd = self.informed_sample(cBest, cMin, xCenter, C)
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearestNode = self.node_list[n_ind]
# steer
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = self.get_new_node(theta, n_ind, nearestNode)
d = self.line_cost(nearestNode, newNode)
noCollision = self.check_collision(nearestNode, theta, d)
if noCollision:
nearInds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearInds)
self.node_list.append(newNode)
self.rewire(newNode, nearInds)
if self.is_near_goal(newNode):
if self.check_segment_collision(newNode.x, newNode.y,
self.goal.x, self.goal.y):
solutionSet.add(newNode)
lastIndex = len(self.node_list) - 1
tempPath = self.get_final_course(lastIndex)
tempPathLen = self.get_path_len(tempPath)
if tempPathLen < cBest:
path = tempPath
cBest = tempPathLen
if animation:
self.draw_graph(xCenter=xCenter,
cBest=cBest, cMin=cMin,
e_theta=e_theta, rnd=rnd)
return path
def choose_parent(self, newNode, nearInds):
if len(nearInds) == 0:
return newNode
dList = []
for i in nearInds:
dx = newNode.x - self.node_list[i].x
dy = newNode.y - self.node_list[i].y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
if self.check_collision(self.node_list[i], theta, d):
dList.append(self.node_list[i].cost + d)
else:
dList.append(float('inf'))
minCost = min(dList)
minInd = nearInds[dList.index(minCost)]
if minCost == float('inf'):
print("min cost is inf")
return newNode
newNode.cost = minCost
newNode.parent = minInd
return newNode
def find_near_nodes(self, newNode):
n_node = len(self.node_list)
r = 50.0 * math.sqrt((math.log(n_node) / n_node))
d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2
for node in self.node_list]
near_inds = [d_list.index(i) for i in d_list if i <= r ** 2]
return near_inds
def informed_sample(self, cMax, cMin, xCenter, C):
if cMax < float('inf'):
r = [cMax / 2.0,
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0,
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0]
L = np.diag(r)
xBall = self.sample_unit_ball()
rnd = np.dot(np.dot(C, L), xBall) + xCenter
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
else:
rnd = self.sample_free_space()
return rnd
@staticmethod
def sample_unit_ball():
a = random.random()
b = random.random()
if b < a:
a, b = b, a
sample = (b * math.cos(2 * math.pi * a / b),
b * math.sin(2 * math.pi * a / b))
return np.array([[sample[0]], [sample[1]], [0]])
def sample_free_space(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = [random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand)]
else:
rnd = [self.goal.x, self.goal.y]
return rnd
@staticmethod
def get_path_len(path):
pathLen = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
pathLen += math.sqrt((node1_x - node2_x)
** 2 + (node1_y - node2_y) ** 2)
return pathLen
@staticmethod
def line_cost(node1, node2):
return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
@staticmethod
def get_nearest_list_index(nodes, rnd):
dList = [(node.x - rnd[0]) ** 2
+ (node.y - rnd[1]) ** 2 for node in nodes]
minIndex = dList.index(min(dList))
return minIndex
def get_new_node(self, theta, n_ind, nearestNode):
newNode = copy.deepcopy(nearestNode)
newNode.x += self.expand_dis * math.cos(theta)
newNode.y += self.expand_dis * math.sin(theta)
newNode.cost += self.expand_dis
newNode.parent = n_ind
return newNode
def is_near_goal(self, node):
d = self.line_cost(node, self.goal)
if d < self.expand_dis:
return True
return False
def rewire(self, newNode, nearInds):
n_node = len(self.node_list)
for i in nearInds:
nearNode = self.node_list[i]
d = math.sqrt((nearNode.x - newNode.x) ** 2
+ (nearNode.y - newNode.y) ** 2)
s_cost = newNode.cost + d
if nearNode.cost > s_cost:
theta = math.atan2(newNode.y - nearNode.y,
newNode.x - nearNode.x)
if self.check_collision(nearNode, theta, d):
nearNode.parent = n_node - 1
nearNode.cost = s_cost
@staticmethod
def distance_squared_point_to_segment(v, w, p):
# Return minimum distance between line segment vw and point p
if np.array_equal(v, w):
return (p - v).dot(p - v) # v == w case
l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt
# Consider the line extending the segment,
# parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
t = max(0, min(1, (p - v).dot(w - v) / l2))
projection = v + t * (w - v) # Projection falls on the segment
return (p - projection).dot(p - projection)
def check_segment_collision(self, x1, y1, x2, y2):
for (ox, oy, size) in self.obstacle_list:
dd = self.distance_squared_point_to_segment(
np.array([x1, y1]),
np.array([x2, y2]),
np.array([ox, oy]))
if dd <= size ** 2:
return False # collision
return True
def check_collision(self, nearNode, theta, d):
tmpNode = copy.deepcopy(nearNode)
end_x = tmpNode.x + math.cos(theta) * d
end_y = tmpNode.y + math.sin(theta) * d
return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y)
def get_final_course(self, lastIndex):
path = [[self.goal.x, self.goal.y]]
while self.node_list[lastIndex].parent is not None:
node = self.node_list[lastIndex]
path.append([node.x, node.y])
lastIndex = node.parent
path.append([self.start.x, self.start.y])
return path
def draw_graph(self, xCenter=None, cBest=None, cMin=None, e_theta=None,
rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
if cBest != float('inf'):
self.plot_ellipse(xCenter, cBest, cMin, e_theta)
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x], [
node.y, self.node_list[node.parent].y], "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.goal.x, self.goal.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
@staticmethod
def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover
a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0
b = cBest / 2.0
angle = math.pi / 2.0 - e_theta
cx = xCenter[0]
cy = xCenter[1]
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
fx = rot_mat_2d(-angle) @ np.array([x, y])
px = np.array(fx[0, :] + cx).flatten()
py = np.array(fx[1, :] + cy).flatten()
plt.plot(cx, cy, "xc")
plt.plot(px, py, "--c")
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print("Start informed rrt star planning")
# create obstacles
obstacleList = [
(5, 5, 0.5),
(9, 6, 1),
(7, 5, 1),
(1, 5, 1),
(3, 6, 1),
(7, 9, 1)
]
# Set params
rrt = InformedRRTStar(start=[0, 0], goal=[5, 10],
randArea=[-2, 15], obstacleList=obstacleList)
path = rrt.informed_rrt_star_search(animation=show_animation)
print("Done!!")
# Plot path
if show_animation:
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01)
plt.show()
if __name__ == '__main__':
main()