Files
PythonRobotics/docs/modules/path_planning/clothoid_path/clothoid_path_main.rst
Atsushi Sakai d74a91e062 Re-architecture document structure (#669)
* Rearchitecture document structure

* Rearchitecture document structure

* Rearchitecture document structure

* Rearchitecture document structure

* Rearchitecture document structure

* Rearchitecture document structure

* Rearchitecture document structure
2022-05-07 15:21:03 +09:00

81 lines
2.2 KiB
ReStructuredText

.. _clothoid-path-planning:
Clothoid path planning
--------------------------
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/ClothoidPath/animation1.gif
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/ClothoidPath/animation2.gif
.. image:: https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/ClothoidPath/animation3.gif
This is a clothoid path planning sample code.
This can interpolate two 2D pose (x, y, yaw) with a clothoid path,
which its curvature is linearly continuous.
In other words, this is G1 Hermite interpolation with a single clothoid segment.
This path planning algorithm as follows:
Step1: Solve g function
~~~~~~~~~~~~~~~~~~~~~~~
Solve the g(A) function with a nonlinear optimization solver.
.. math::
g(A):=Y(2A, \delta-A, \phi_{s})
Where
* :math:`\delta`: the orientation difference between start and goal pose.
* :math:`\phi_{s}`: the orientation of the start pose.
* :math:`Y`: :math:`Y(a, b, c)=\int_{0}^{1} \sin \left(\frac{a}{2} \tau^{2}+b \tau+c\right) d \tau`
Step2: Calculate path parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can calculate these path parameters using :math:`A`,
:math:`L`: path length
.. math::
L=\frac{R}{X\left(2 A, \delta-A, \phi_{s}\right)}
where
* :math:`R`: the distance between start and goal pose
* :math:`X`: :math:`X(a, b, c)=\int_{0}^{1} \cos \left(\frac{a}{2} \tau^{2}+b \tau+c\right) d \tau`
- :math:`\kappa`: curvature
.. math::
\kappa=(\delta-A) / L
- :math:`\kappa'`: curvature rate
.. math::
\kappa^{\prime}=2 A / L^{2}
Step3: Construct a path with Fresnel integral
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The final clothoid path can be calculated with the path parameters and Fresnel integrals.
.. math::
\begin{aligned}
&x(s)=x_{0}+\int_{0}^{s} \cos \left(\frac{1}{2} \kappa^{\prime} \tau^{2}+\kappa \tau+\vartheta_{0}\right) \mathrm{d} \tau \\
&y(s)=y_{0}+\int_{0}^{s} \sin \left(\frac{1}{2} \kappa^{\prime} \tau^{2}+\kappa \tau+\vartheta_{0}\right) \mathrm{d} \tau
\end{aligned}
References
~~~~~~~~~~
- `Fast and accurate G1 fitting of clothoid curves <https://www.researchgate.net/publication/237062806>`__