Files
PythonRobotics/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable_generator.py
2018-12-14 20:43:35 +09:00

115 lines
2.6 KiB
Python

"""
Lookup Table generation for model predictive trajectory generator
author: Atsushi Sakai
"""
from matplotlib import pyplot as plt
import numpy as np
import math
import model_predictive_trajectory_generator as planner
import motion_model
import pandas as pd
def calc_states_list():
maxyaw = np.deg2rad(-30.0)
x = np.arange(10.0, 30.0, 5.0)
y = np.arange(0.0, 20.0, 2.0)
yaw = np.arange(-maxyaw, maxyaw, maxyaw)
states = []
for iyaw in yaw:
for iy in y:
for ix in x:
states.append([ix, iy, iyaw])
print("nstate:", len(states))
return states
def search_nearest_one_from_lookuptable(tx, ty, tyaw, lookuptable):
mind = float("inf")
minid = -1
for (i, table) in enumerate(lookuptable):
dx = tx - table[0]
dy = ty - table[1]
dyaw = tyaw - table[2]
d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2)
if d <= mind:
minid = i
mind = d
# print(minid)
return lookuptable[minid]
def save_lookup_table(fname, table):
mt = np.array(table)
print(mt)
# save csv
df = pd.DataFrame()
df["x"] = mt[:, 0]
df["y"] = mt[:, 1]
df["yaw"] = mt[:, 2]
df["s"] = mt[:, 3]
df["km"] = mt[:, 4]
df["kf"] = mt[:, 5]
df.to_csv(fname, index=None)
print("lookup table file is saved as " + fname)
def generate_lookup_table():
states = calc_states_list()
k0 = 0.0
# x, y, yaw, s, km, kf
lookuptable = [[1.0, 0.0, 0.0, 1.0, 0.0, 0.0]]
for state in states:
bestp = search_nearest_one_from_lookuptable(
state[0], state[1], state[2], lookuptable)
target = motion_model.State(x=state[0], y=state[1], yaw=state[2])
init_p = np.array(
[math.sqrt(state[0] ** 2 + state[1] ** 2), bestp[4], bestp[5]]).reshape(3, 1)
x, y, yaw, p = planner.optimize_trajectory(target, k0, init_p)
if x is not None:
print("find good path")
lookuptable.append(
[x[-1], y[-1], yaw[-1], float(p[0]), float(p[1]), float(p[2])])
print("finish lookup table generation")
save_lookup_table("lookuptable.csv", lookuptable)
for table in lookuptable:
xc, yc, yawc = motion_model.generate_trajectory(
table[3], table[4], table[5], k0)
plt.plot(xc, yc, "-r")
xc, yc, yawc = motion_model.generate_trajectory(
table[3], -table[4], -table[5], k0)
plt.plot(xc, yc, "-r")
plt.grid(True)
plt.axis("equal")
plt.show()
print("Done")
def main():
generate_lookup_table()
if __name__ == '__main__':
main()