Files
PythonRobotics/Mapping/kmeans_clustering/kmeans_clustering.py
2019-12-14 14:50:32 +03:00

150 lines
3.5 KiB
Python

"""
Object clustering with k-means algorithm
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import random
# k means parameters
MAX_LOOP = 10
DCOST_TH = 0.1
show_animation = True
def kmeans_clustering(rx, ry, nc):
clusters = Clusters(rx, ry, nc)
clusters.calc_centroid()
pre_cost = float("inf")
for loop in range(MAX_LOOP):
print("loop:", loop)
cost = clusters.update_clusters()
clusters.calc_centroid()
d_cost = abs(cost - pre_cost)
if d_cost < DCOST_TH:
break
pre_cost = cost
return clusters
class Clusters:
def __init__(self, x, y, n_label):
self.x = x
self.y = y
self.n_data = len(self.x)
self.n_label = n_label
self.labels = [random.randint(0, n_label - 1)
for _ in range(self.n_data)]
self.center_x = [0.0 for _ in range(n_label)]
self.center_y = [0.0 for _ in range(n_label)]
def plot_cluster(self):
for label in set(self.labels):
x, y = self._get_labeled_x_y(label)
plt.plot(x, y, ".")
def calc_centroid(self):
for label in set(self.labels):
x, y = self._get_labeled_x_y(label)
n_data = len(x)
self.center_x[label] = sum(x) / n_data
self.center_y[label] = sum(y) / n_data
def update_clusters(self):
cost = 0.0
for ip in range(self.n_data):
px = self.x[ip]
py = self.y[ip]
dx = [icx - px for icx in self.center_x]
dy = [icy - py for icy in self.center_y]
dist_list = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)]
min_dist = min(dist_list)
min_id = dist_list.index(min_dist)
self.labels[ip] = min_id
cost += min_dist
return cost
def _get_labeled_x_y(self, target_label):
x = [self.x[i] for i, label in enumerate(self.labels) if label == target_label]
y = [self.y[i] for i, label in enumerate(self.labels) if label == target_label]
return x, y
def calc_raw_data(cx, cy, n_points, rand_d):
rx, ry = [], []
for (icx, icy) in zip(cx, cy):
for _ in range(n_points):
rx.append(icx + rand_d * (random.random() - 0.5))
ry.append(icy + rand_d * (random.random() - 0.5))
return rx, ry
def update_positions(cx, cy):
# object moving parameters
DX1 = 0.4
DY1 = 0.5
DX2 = -0.3
DY2 = -0.5
cx[0] += DX1
cy[0] += DY1
cx[1] += DX2
cy[1] += DY2
return cx, cy
def main():
print(__file__ + " start!!")
cx = [0.0, 8.0]
cy = [0.0, 8.0]
n_points = 10
rand_d = 3.0
n_cluster = 2
sim_time = 15.0
dt = 1.0
time = 0.0
while time <= sim_time:
print("Time:", time)
time += dt
# objects moving simulation
cx, cy = update_positions(cx, cy)
raw_x, raw_y = calc_raw_data(cx, cy, n_points, rand_d)
clusters = kmeans_clustering(raw_x, raw_y, n_cluster)
# for animation
if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
clusters.plot_cluster()
plt.plot(cx, cy, "or")
plt.xlim(-2.0, 10.0)
plt.ylim(-2.0, 10.0)
plt.pause(dt)
print("Done")
if __name__ == '__main__':
main()