Files
PythonRobotics/PathPlanning/LQRRRTStar/lqr_rrt_star.py
2019-12-14 14:50:32 +03:00

244 lines
6.9 KiB
Python

"""
Path planning code with LQR RRT*
author: AtsushiSakai(@Atsushi_twi)
"""
import copy
import math
import os
import random
import sys
import matplotlib.pyplot as plt
import numpy as np
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../LQRPlanner/")
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../RRTStar/")
try:
from LQRplanner import LQRPlanner
from rrt_star import RRTStar
except ImportError:
raise
show_animation = True
class LQRRRTStar(RRTStar):
"""
Class for RRT star planning with LQR planning
"""
def __init__(self, start, goal, obstacle_list, rand_area,
goal_sample_rate=10,
max_iter=200,
connect_circle_dist=50.0,
step_size=0.2
):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
"""
self.start = self.Node(start[0], start[1])
self.end = self.Node(goal[0], goal[1])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.connect_circle_dist = connect_circle_dist
self.curvature = 1.0
self.goal_xy_th = 0.5
self.step_size = step_size
self.lqr_planner = LQRPlanner()
def planning(self, animation=True, search_until_max_iter=True):
"""
RRT Star planning
animation: flag for animation on or off
"""
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd)
if self.check_collision(new_node, self.obstacle_list):
near_indexes = self.find_near_nodes(new_node)
new_node = self.choose_parent(new_node, near_indexes)
if new_node:
self.node_list.append(new_node)
self.rewire(new_node, near_indexes)
if animation and i % 5 == 0:
self.draw_graph(rnd)
if (not search_until_max_iter) and new_node: # check reaching the goal
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index:
return self.generate_final_course(last_index)
else:
print("Cannot find path")
return None
def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def search_best_goal_node(self):
dist_to_goal_list = [self.calc_dist_to_goal(n.x, n.y) for n in self.node_list]
goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.goal_xy_th]
if not goal_inds:
return None
min_cost = min([self.node_list[i].cost for i in goal_inds])
for i in goal_inds:
if self.node_list[i].cost == min_cost:
return i
return None
def calc_new_cost(self, from_node, to_node):
wx, wy = self.lqr_planner.lqr_planning(
from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False)
px, py, course_lengths = self.sample_path(wx, wy, self.step_size)
if not course_lengths:
return float("inf")
return from_node.cost + sum(course_lengths)
def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = self.Node(random.uniform(self.min_rand, self.max_rand),
random.uniform(self.min_rand, self.max_rand)
)
else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y)
return rnd
def generate_final_course(self, goal_index):
print("final")
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_index]
while node.parent:
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
node = node.parent
path.append([self.start.x, self.start.y])
return path
def sample_path(self, wx, wy, step):
px, py, clen = [], [], []
for i in range(len(wx) - 1):
for t in np.arange(0.0, 1.0, step):
px.append(t * wx[i + 1] + (1.0 - t) * wx[i])
py.append(t * wy[i + 1] + (1.0 - t) * wy[i])
dx = np.diff(px)
dy = np.diff(py)
clen = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)]
return px, py, clen
def steer(self, from_node, to_node):
wx, wy = self.lqr_planner.lqr_planning(
from_node.x, from_node.y, to_node.x, to_node.y, show_animation=False)
px, py, course_lens = self.sample_path(wx, wy, self.step_size)
if px is None:
return None
newNode = copy.deepcopy(from_node)
newNode.x = px[-1]
newNode.y = py[-1]
newNode.path_x = px
newNode.path_y = py
newNode.cost += sum([abs(c) for c in course_lens])
newNode.parent = from_node
return newNode
def main(maxIter=200):
print("Start " + __file__)
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(4, 6, 1),
(4, 7.5, 1),
(4, 9, 1),
(6, 5, 1),
(7, 5, 1)
] # [x,y,size]
# Set Initial parameters
start = [0.0, 0.0]
goal = [6.0, 7.0]
lqr_rrt_star = LQRRRTStar(start, goal,
obstacleList,
[-2.0, 15.0])
path = lqr_rrt_star.planning(animation=show_animation)
# Draw final path
if show_animation: # pragma: no cover
lqr_rrt_star.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
print("Done")
if __name__ == '__main__':
main()