mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
218 lines
5.8 KiB
Python
218 lines
5.8 KiB
Python
"""
|
|
|
|
Path tracking simulation with Stanley steering control and PID speed control.
|
|
|
|
author: Atsushi Sakai (@Atsushi_twi)
|
|
|
|
Ref:
|
|
- [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf)
|
|
- [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf)
|
|
|
|
"""
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import sys
|
|
import pathlib
|
|
sys.path.append(str(pathlib.Path(__file__).parent.parent.parent))
|
|
|
|
from PathPlanning.CubicSpline import cubic_spline_planner
|
|
|
|
k = 0.5 # control gain
|
|
Kp = 1.0 # speed proportional gain
|
|
dt = 0.1 # [s] time difference
|
|
L = 2.9 # [m] Wheel base of vehicle
|
|
max_steer = np.radians(30.0) # [rad] max steering angle
|
|
|
|
show_animation = True
|
|
|
|
|
|
class State(object):
|
|
"""
|
|
Class representing the state of a vehicle.
|
|
|
|
:param x: (float) x-coordinate
|
|
:param y: (float) y-coordinate
|
|
:param yaw: (float) yaw angle
|
|
:param v: (float) speed
|
|
"""
|
|
|
|
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
|
|
"""Instantiate the object."""
|
|
super(State, self).__init__()
|
|
self.x = x
|
|
self.y = y
|
|
self.yaw = yaw
|
|
self.v = v
|
|
|
|
def update(self, acceleration, delta):
|
|
"""
|
|
Update the state of the vehicle.
|
|
|
|
Stanley Control uses bicycle model.
|
|
|
|
:param acceleration: (float) Acceleration
|
|
:param delta: (float) Steering
|
|
"""
|
|
delta = np.clip(delta, -max_steer, max_steer)
|
|
|
|
self.x += self.v * np.cos(self.yaw) * dt
|
|
self.y += self.v * np.sin(self.yaw) * dt
|
|
self.yaw += self.v / L * np.tan(delta) * dt
|
|
self.yaw = normalize_angle(self.yaw)
|
|
self.v += acceleration * dt
|
|
|
|
|
|
def pid_control(target, current):
|
|
"""
|
|
Proportional control for the speed.
|
|
|
|
:param target: (float)
|
|
:param current: (float)
|
|
:return: (float)
|
|
"""
|
|
return Kp * (target - current)
|
|
|
|
|
|
def stanley_control(state, cx, cy, cyaw, last_target_idx):
|
|
"""
|
|
Stanley steering control.
|
|
|
|
:param state: (State object)
|
|
:param cx: ([float])
|
|
:param cy: ([float])
|
|
:param cyaw: ([float])
|
|
:param last_target_idx: (int)
|
|
:return: (float, int)
|
|
"""
|
|
current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
|
|
|
|
if last_target_idx >= current_target_idx:
|
|
current_target_idx = last_target_idx
|
|
|
|
# theta_e corrects the heading error
|
|
theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
|
|
# theta_d corrects the cross track error
|
|
theta_d = np.arctan2(k * error_front_axle, state.v)
|
|
# Steering control
|
|
delta = theta_e + theta_d
|
|
|
|
return delta, current_target_idx
|
|
|
|
|
|
def normalize_angle(angle):
|
|
"""
|
|
Normalize an angle to [-pi, pi].
|
|
|
|
:param angle: (float)
|
|
:return: (float) Angle in radian in [-pi, pi]
|
|
"""
|
|
while angle > np.pi:
|
|
angle -= 2.0 * np.pi
|
|
|
|
while angle < -np.pi:
|
|
angle += 2.0 * np.pi
|
|
|
|
return angle
|
|
|
|
|
|
def calc_target_index(state, cx, cy):
|
|
"""
|
|
Compute index in the trajectory list of the target.
|
|
|
|
:param state: (State object)
|
|
:param cx: [float]
|
|
:param cy: [float]
|
|
:return: (int, float)
|
|
"""
|
|
# Calc front axle position
|
|
fx = state.x + L * np.cos(state.yaw)
|
|
fy = state.y + L * np.sin(state.yaw)
|
|
|
|
# Search nearest point index
|
|
dx = [fx - icx for icx in cx]
|
|
dy = [fy - icy for icy in cy]
|
|
d = np.hypot(dx, dy)
|
|
target_idx = np.argmin(d)
|
|
|
|
# Project RMS error onto front axle vector
|
|
front_axle_vec = [-np.cos(state.yaw + np.pi / 2),
|
|
-np.sin(state.yaw + np.pi / 2)]
|
|
error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec)
|
|
|
|
return target_idx, error_front_axle
|
|
|
|
|
|
def main():
|
|
"""Plot an example of Stanley steering control on a cubic spline."""
|
|
# target course
|
|
ax = [0.0, 100.0, 100.0, 50.0, 60.0]
|
|
ay = [0.0, 0.0, -30.0, -20.0, 0.0]
|
|
|
|
cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(
|
|
ax, ay, ds=0.1)
|
|
|
|
target_speed = 30.0 / 3.6 # [m/s]
|
|
|
|
max_simulation_time = 100.0
|
|
|
|
# Initial state
|
|
state = State(x=-0.0, y=5.0, yaw=np.radians(20.0), v=0.0)
|
|
|
|
last_idx = len(cx) - 1
|
|
time = 0.0
|
|
x = [state.x]
|
|
y = [state.y]
|
|
yaw = [state.yaw]
|
|
v = [state.v]
|
|
t = [0.0]
|
|
target_idx, _ = calc_target_index(state, cx, cy)
|
|
|
|
while max_simulation_time >= time and last_idx > target_idx:
|
|
ai = pid_control(target_speed, state.v)
|
|
di, target_idx = stanley_control(state, cx, cy, cyaw, target_idx)
|
|
state.update(ai, di)
|
|
|
|
time += dt
|
|
|
|
x.append(state.x)
|
|
y.append(state.y)
|
|
yaw.append(state.yaw)
|
|
v.append(state.v)
|
|
t.append(time)
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.cla()
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect('key_release_event',
|
|
lambda event: [exit(0) if event.key == 'escape' else None])
|
|
plt.plot(cx, cy, ".r", label="course")
|
|
plt.plot(x, y, "-b", label="trajectory")
|
|
plt.plot(cx[target_idx], cy[target_idx], "xg", label="target")
|
|
plt.axis("equal")
|
|
plt.grid(True)
|
|
plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4])
|
|
plt.pause(0.001)
|
|
|
|
# Test
|
|
assert last_idx >= target_idx, "Cannot reach goal"
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(cx, cy, ".r", label="course")
|
|
plt.plot(x, y, "-b", label="trajectory")
|
|
plt.legend()
|
|
plt.xlabel("x[m]")
|
|
plt.ylabel("y[m]")
|
|
plt.axis("equal")
|
|
plt.grid(True)
|
|
|
|
plt.subplots(1)
|
|
plt.plot(t, [iv * 3.6 for iv in v], "-r")
|
|
plt.xlabel("Time[s]")
|
|
plt.ylabel("Speed[km/h]")
|
|
plt.grid(True)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|