Files
PythonRobotics/PathPlanning/RRT/rrt_with_pathsmoothing.py
2018-10-23 21:49:08 +09:00

283 lines
7.2 KiB
Python

"""
Path Planning Sample Code with Randamized Rapidly-Exploring Random Trees (RRT)
@author: AtsushiSakai(@Atsushi_twi)
"""
import matplotlib.pyplot as plt
import random
import math
import copy
show_animation = True
class RRT():
"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList, randArea, expandDis=1.0, goalSampleRate=5, maxIter=500):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start = Node(start[0], start[1])
self.end = Node(goal[0], goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.expandDis = expandDis
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
def Planning(self, animation=True):
"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
while True:
# Random Sampling
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(
self.minrand, self.maxrand)]
else:
rnd = [self.end.x, self.end.y]
# Find nearest node
nind = self.GetNearestListIndex(self.nodeList, rnd)
# print(nind)
# expand tree
nearestNode = self.nodeList[nind]
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = copy.deepcopy(nearestNode)
newNode.x += self.expandDis * math.cos(theta)
newNode.y += self.expandDis * math.sin(theta)
newNode.parent = nind
if not self.__CollisionCheck(newNode, self.obstacleList):
continue
self.nodeList.append(newNode)
# check goal
dx = newNode.x - self.end.x
dy = newNode.y - self.end.y
d = math.sqrt(dx * dx + dy * dy)
if d <= self.expandDis:
print("Goal!!")
break
if animation:
self.DrawGraph(rnd)
path = [[self.end.x, self.end.y]]
lastIndex = len(self.nodeList) - 1
while self.nodeList[lastIndex].parent is not None:
node = self.nodeList[lastIndex]
path.append([node.x, node.y])
lastIndex = node.parent
path.append([self.start.x, self.start.y])
return path
def DrawGraph(self, rnd=None):
plt.clf()
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot([node.x, self.nodeList[node.parent].x], [
node.y, self.nodeList[node.parent].y], "-g")
for (x, y, size) in self.obstacleList:
self.PlotCircle(x, y, size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def PlotCircle(self, x, y, size):
deg = list(range(0, 360, 5))
deg.append(0)
xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
plt.plot(xl, yl, "-k")
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1])
** 2 for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def __CollisionCheck(self, node, obstacleList):
for (ox, oy, size) in obstacleList:
dx = ox - node.x
dy = oy - node.y
d = math.sqrt(dx * dx + dy * dy)
if d <= size:
return False # collision
return True # safe
class Node():
"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
def GetPathLength(path):
le = 0
for i in range(len(path) - 1):
dx = path[i + 1][0] - path[i][0]
dy = path[i + 1][1] - path[i][1]
d = math.sqrt(dx * dx + dy * dy)
le += d
return le
def GetTargetPoint(path, targetL):
le = 0
ti = 0
lastPairLen = 0
for i in range(len(path) - 1):
dx = path[i + 1][0] - path[i][0]
dy = path[i + 1][1] - path[i][1]
d = math.sqrt(dx * dx + dy * dy)
le += d
if le >= targetL:
ti = i - 1
lastPairLen = d
break
partRatio = (le - targetL) / lastPairLen
# print(partRatio)
# print((ti,len(path),path[ti],path[ti+1]))
x = path[ti][0] + (path[ti + 1][0] - path[ti][0]) * partRatio
y = path[ti][1] + (path[ti + 1][1] - path[ti][1]) * partRatio
# print((x,y))
return [x, y, ti]
def LineCollisionCheck(first, second, obstacleList):
# Line Equation
x1 = first[0]
y1 = first[1]
x2 = second[0]
y2 = second[1]
try:
a = y2 - y1
b = -(x2 - x1)
c = y2 * (x2 - x1) - x2 * (y2 - y1)
except ZeroDivisionError:
return False
for (ox, oy, size) in obstacleList:
d = abs(a * ox + b * oy + c) / (math.sqrt(a * a + b * b))
if d <= (size):
return False
# print("OK")
return True # OK
def PathSmoothing(path, maxIter, obstacleList):
# print("PathSmoothing")
le = GetPathLength(path)
for i in range(maxIter):
# Sample two points
pickPoints = [random.uniform(0, le), random.uniform(0, le)]
pickPoints.sort()
# print(pickPoints)
first = GetTargetPoint(path, pickPoints[0])
# print(first)
second = GetTargetPoint(path, pickPoints[1])
# print(second)
if first[2] <= 0 or second[2] <= 0:
continue
if (second[2] + 1) > len(path):
continue
if second[2] == first[2]:
continue
# collision check
if not LineCollisionCheck(first, second, obstacleList):
continue
# Create New path
newPath = []
newPath.extend(path[:first[2] + 1])
newPath.append([first[0], first[1]])
newPath.append([second[0], second[1]])
newPath.extend(path[second[2] + 1:])
path = newPath
le = GetPathLength(path)
return path
def main():
# ====Search Path with RRT====
# Parameter
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size]
rrt = RRT(start=[0, 0], goal=[5, 10],
randArea=[-2, 15], obstacleList=obstacleList)
path = rrt.Planning(animation=show_animation)
# Path smoothing
maxIter = 1000
smoothedPath = PathSmoothing(path, maxIter, obstacleList)
# Draw final path
if show_animation:
rrt.DrawGraph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.plot([x for (x, y) in smoothedPath], [
y for (x, y) in smoothedPath], '-b')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()
if __name__ == '__main__':
main()