Files
PythonRobotics/PathPlanning/LQRRRTStar/lqr_rrt_star.py

315 lines
8.0 KiB
Python

"""
Path planning code with LQR RRT*
author: AtsushiSakai(@Atsushi_twi)
"""
import sys
sys.path.append("../LQRPlanner/")
import random
import math
import copy
import numpy as np
import matplotlib.pyplot as plt
import LQRplanner
show_animation = True
LQRplanner.show_animation = False
STEP_SIZE = 0.05 # step size of local path
XYTH = 0.5 # [m] acceptance xy distance in final paths
class RRT():
"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList, randArea,
goalSampleRate=10, maxIter=200):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start = Node(start[0], start[1])
self.end = Node(goal[0], goal[1])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
self.obstacleList = obstacleList
def planning(self, animation=True):
"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
for i in range(self.maxIter):
rnd = self.get_random_point()
nind = self.get_nearest_index(self.nodeList, rnd)
newNode = self.steer(rnd, nind)
if newNode is None:
continue
if self.check_collision(newNode, self.obstacleList):
nearinds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearinds)
if newNode is None:
continue
self.nodeList.append(newNode)
self.rewire(newNode, nearinds)
if animation and i % 5 == 0:
self.draw_graph(rnd=rnd)
# generate coruse
lastIndex = self.get_best_last_index()
if lastIndex is None:
return None
path = self.gen_final_course(lastIndex)
return path
def choose_parent(self, newNode, nearinds):
if len(nearinds) == 0:
return newNode
dlist = []
for i in nearinds:
tNode = self.steer(newNode, i)
if tNode is None:
continue
if self.check_collision(tNode, self.obstacleList):
dlist.append(tNode.cost)
else:
dlist.append(float("inf"))
mincost = min(dlist)
minind = nearinds[dlist.index(mincost)]
if mincost == float("inf"):
print("mincost is inf")
return newNode
newNode = self.steer(newNode, minind)
return newNode
def pi_2_pi(self, angle):
return (angle + math.pi) % (2*math.pi) - math.pi
def sample_path(self, wx, wy, step):
px, py, clen = [], [], []
for i in range(len(wx) - 1):
for t in np.arange(0.0, 1.0, step):
px.append(t * wx[i + 1] + (1.0 - t) * wx[i])
py.append(t * wy[i + 1] + (1.0 - t) * wy[i])
dx = np.diff(px)
dy = np.diff(py)
clen = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)]
return px, py, clen
def steer(self, rnd, nind):
nearestNode = self.nodeList[nind]
wx, wy = LQRplanner.LQRplanning(
nearestNode.x, nearestNode.y, rnd.x, rnd.y)
px, py, clen = self.sample_path(wx, wy, STEP_SIZE)
if px is None:
return None
newNode = copy.deepcopy(nearestNode)
newNode.x = px[-1]
newNode.y = py[-1]
newNode.path_x = px
newNode.path_y = py
newNode.cost += sum([abs(c) for c in clen])
newNode.parent = nind
return newNode
def get_random_point(self):
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand),
random.uniform(-math.pi, math.pi)
]
else: # goal point sampling
rnd = [self.end.x, self.end.y]
node = Node(rnd[0], rnd[1])
return node
def get_best_last_index(self):
# print("get_best_last_index")
goalinds = []
for (i, node) in enumerate(self.nodeList):
if self.calc_dist_to_goal(node.x, node.y) <= XYTH:
goalinds.append(i)
if len(goalinds) == 0:
return None
mincost = min([self.nodeList[i].cost for i in goalinds])
for i in goalinds:
if self.nodeList[i].cost == mincost:
return i
return None
def gen_final_course(self, goalind):
path = [[self.end.x, self.end.y]]
while self.nodeList[goalind].parent is not None:
node = self.nodeList[goalind]
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
goalind = node.parent
path.append([self.start.x, self.start.y])
return path
def calc_dist_to_goal(self, x, y):
return np.linalg.norm([x - self.end.x, y - self.end.y])
def find_near_nodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
dlist = [(node.x - newNode.x) ** 2 +
(node.y - newNode.y) ** 2
for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def rewire(self, newNode, nearinds):
nnode = len(self.nodeList)
for i in nearinds:
nearNode = self.nodeList[i]
tNode = self.steer(nearNode, nnode - 1)
if tNode is None:
continue
obstacleOK = self.check_collision(tNode, self.obstacleList)
imporveCost = nearNode.cost > tNode.cost
if obstacleOK and imporveCost:
# print("rewire")
self.nodeList[i] = tNode
def draw_graph(self, rnd=None):
plt.clf()
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot(node.path_x, node.path_y, "-g")
for (ox, oy, size) in self.obstacleList:
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "or")
plt.plot(self.end.x, self.end.y, "or")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
def get_nearest_index(self, nodeList, rnd):
dlist = [(node.x - rnd.x) ** 2 +
(node.y - rnd.y) ** 2
for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def check_collision(self, node, obstacleList):
px = np.array(node.path_x)
py = np.array(node.path_y)
for (ox, oy, size) in obstacleList:
dx = ox - px
dy = oy - py
d = dx ** 2 + dy ** 2
dmin = min(d)
if dmin <= size ** 2:
return False # collision
return True # safe
class Node():
"""
RRT Node
"""
def __init__(self, x, y):
self.x = x
self.y = y
self.path_x = []
self.path_y = []
self.cost = 0.0
self.parent = None
def main():
print("Start rrt start planning")
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(4, 6, 1),
(4, 7.5, 1),
(4, 9, 1),
(6, 5, 1),
(7, 5, 1)
] # [x,y,size]
# Set Initial parameters
start = [0.0, 0.0]
goal = [6.0, 7.0]
rrt = RRT(start, goal, randArea=[-2.0, 15.0], obstacleList=obstacleList)
path = rrt.planning(animation=show_animation)
# Draw final path
if show_animation:
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
print("Done")
if __name__ == '__main__':
main()