mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-02-11 12:48:38 -05:00
312 lines
9.6 KiB
Python
312 lines
9.6 KiB
Python
"""
|
|
|
|
Bidirectional Breadth-First grid planning
|
|
|
|
author: Erwin Lejeune (@spida_rwin)
|
|
|
|
See Wikipedia article (https://en.wikipedia.org/wiki/Breadth-first_search)
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
show_animation = True
|
|
|
|
|
|
class BidirectionalBreadthFirstSearchPlanner:
|
|
|
|
def __init__(self, ox, oy, reso, rr):
|
|
"""
|
|
Initialize grid map for bfs planning
|
|
|
|
ox: x position list of Obstacles [m]
|
|
oy: y position list of Obstacles [m]
|
|
resolution: grid resolution [m]
|
|
rr: robot radius[m]
|
|
"""
|
|
|
|
self.reso = reso
|
|
self.rr = rr
|
|
self.calc_obstacle_map(ox, oy)
|
|
self.motion = self.get_motion_model()
|
|
|
|
class Node:
|
|
def __init__(self, x, y, cost, pind, parent):
|
|
self.x = x # index of grid
|
|
self.y = y # index of grid
|
|
self.cost = cost
|
|
self.pind = pind
|
|
self.parent = parent
|
|
|
|
def __str__(self):
|
|
return str(self.x) + "," + str(self.y) + "," + str(
|
|
self.cost) + "," + str(self.pind)
|
|
|
|
def planning(self, sx, sy, gx, gy):
|
|
"""
|
|
Bidirectional Breadth First search based planning
|
|
|
|
input:
|
|
s_x: start x position [m]
|
|
s_y: start y position [m]
|
|
gx: goal x position [m]
|
|
gy: goal y position [m]
|
|
|
|
output:
|
|
rx: x position list of the final path
|
|
ry: y position list of the final path
|
|
"""
|
|
|
|
nstart = self.Node(self.calc_xyindex(sx, self.minx),
|
|
self.calc_xyindex(sy, self.miny), 0.0, -1, None)
|
|
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
|
|
self.calc_xyindex(gy, self.miny), 0.0, -1, None)
|
|
|
|
open_set_A, closed_set_A = dict(), dict()
|
|
open_set_B, closed_set_B = dict(), dict()
|
|
open_set_B[self.calc_grid_index(ngoal)] = ngoal
|
|
open_set_A[self.calc_grid_index(nstart)] = nstart
|
|
|
|
while 1:
|
|
if len(open_set_A) == 0:
|
|
print("Open set A is empty..")
|
|
break
|
|
|
|
if len(open_set_B) == 0:
|
|
print("Open set B is empty")
|
|
break
|
|
|
|
current_A = open_set_A.pop(list(open_set_A.keys())[0])
|
|
current_B = open_set_B.pop(list(open_set_B.keys())[0])
|
|
|
|
c_id_A = self.calc_grid_index(current_A)
|
|
c_id_B = self.calc_grid_index(current_B)
|
|
|
|
closed_set_A[c_id_A] = current_A
|
|
closed_set_B[c_id_B] = current_B
|
|
|
|
# show graph
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(self.calc_grid_position(current_A.x, self.minx),
|
|
self.calc_grid_position(current_A.y, self.miny), "xc")
|
|
plt.plot(self.calc_grid_position(current_B.x, self.minx),
|
|
self.calc_grid_position(current_B.y, self.miny), "xc")
|
|
# for stopping simulation with the esc key.
|
|
plt.gcf().canvas.mpl_connect('key_release_event',
|
|
lambda event:
|
|
[exit(0) if
|
|
event.key == 'escape' else None])
|
|
if len(closed_set_A.keys()) % 10 == 0:
|
|
plt.pause(0.001)
|
|
|
|
if c_id_A in closed_set_B:
|
|
print("Find goal")
|
|
meetpointA = closed_set_A[c_id_A]
|
|
meetpointB = closed_set_B[c_id_A]
|
|
break
|
|
|
|
elif c_id_B in closed_set_A:
|
|
print("Find goal")
|
|
meetpointA = closed_set_A[c_id_B]
|
|
meetpointB = closed_set_B[c_id_B]
|
|
break
|
|
|
|
# expand_grid search grid based on motion model
|
|
for i, _ in enumerate(self.motion):
|
|
breakA = False
|
|
breakB = False
|
|
|
|
node_A = self.Node(current_A.x + self.motion[i][0],
|
|
current_A.y + self.motion[i][1],
|
|
current_A.cost + self.motion[i][2],
|
|
c_id_A, None)
|
|
node_B = self.Node(current_B.x + self.motion[i][0],
|
|
current_B.y + self.motion[i][1],
|
|
current_B.cost + self.motion[i][2],
|
|
c_id_B, None)
|
|
|
|
n_id_A = self.calc_grid_index(node_A)
|
|
n_id_B = self.calc_grid_index(node_B)
|
|
|
|
# If the node is not safe, do nothing
|
|
if not self.verify_node(node_A):
|
|
breakA = True
|
|
|
|
if not self.verify_node(node_B):
|
|
breakB = True
|
|
|
|
if (n_id_A not in closed_set_A) and (n_id_A not in
|
|
open_set_A) and (not
|
|
breakA):
|
|
node_A.parent = current_A
|
|
open_set_A[n_id_A] = node_A
|
|
|
|
if (n_id_B not in closed_set_B) and (n_id_B not in
|
|
open_set_B) and (not
|
|
breakB):
|
|
node_B.parent = current_B
|
|
open_set_B[n_id_B] = node_B
|
|
|
|
rx, ry = self.calc_final_path_bidir(
|
|
meetpointA, meetpointB, closed_set_A, closed_set_B)
|
|
return rx, ry
|
|
|
|
# takes both set and meeting nodes and calculate optimal path
|
|
def calc_final_path_bidir(self, n1, n2, setA, setB):
|
|
rxA, ryA = self.calc_final_path(n1, setA)
|
|
rxB, ryB = self.calc_final_path(n2, setB)
|
|
|
|
rxA.reverse()
|
|
ryA.reverse()
|
|
|
|
rx = rxA + rxB
|
|
ry = ryA + ryB
|
|
|
|
return rx, ry
|
|
|
|
def calc_final_path(self, ngoal, closedset):
|
|
# generate final course
|
|
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
|
|
self.calc_grid_position(ngoal.y, self.miny)]
|
|
n = closedset[ngoal.parent_index]
|
|
while n is not None:
|
|
rx.append(self.calc_grid_position(n.x, self.minx))
|
|
ry.append(self.calc_grid_position(n.y, self.miny))
|
|
n = n.parent
|
|
|
|
return rx, ry
|
|
|
|
def calc_grid_position(self, index, minp):
|
|
"""
|
|
calc grid position
|
|
|
|
:param index:
|
|
:param minp:
|
|
:return:
|
|
"""
|
|
pos = index * self.reso + minp
|
|
return pos
|
|
|
|
def calc_xyindex(self, position, min_pos):
|
|
return round((position - min_pos) / self.reso)
|
|
|
|
def calc_grid_index(self, node):
|
|
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
|
|
|
|
def verify_node(self, node):
|
|
px = self.calc_grid_position(node.x, self.minx)
|
|
py = self.calc_grid_position(node.y, self.miny)
|
|
|
|
if px < self.minx:
|
|
return False
|
|
elif py < self.miny:
|
|
return False
|
|
elif px >= self.maxx:
|
|
return False
|
|
elif py >= self.maxy:
|
|
return False
|
|
|
|
# collision check
|
|
if self.obmap[node.x][node.y]:
|
|
return False
|
|
|
|
return True
|
|
|
|
def calc_obstacle_map(self, ox, oy):
|
|
|
|
self.minx = round(min(ox))
|
|
self.miny = round(min(oy))
|
|
self.maxx = round(max(ox))
|
|
self.maxy = round(max(oy))
|
|
print("min_x:", self.minx)
|
|
print("min_y:", self.miny)
|
|
print("max_x:", self.maxx)
|
|
print("max_y:", self.maxy)
|
|
|
|
self.xwidth = round((self.maxx - self.minx) / self.reso)
|
|
self.ywidth = round((self.maxy - self.miny) / self.reso)
|
|
print("x_width:", self.xwidth)
|
|
print("y_width:", self.ywidth)
|
|
|
|
# obstacle map generation
|
|
self.obmap = [[False for _ in range(self.ywidth)]
|
|
for _ in range(self.xwidth)]
|
|
for ix in range(self.xwidth):
|
|
x = self.calc_grid_position(ix, self.minx)
|
|
for iy in range(self.ywidth):
|
|
y = self.calc_grid_position(iy, self.miny)
|
|
for iox, ioy in zip(ox, oy):
|
|
d = math.hypot(iox - x, ioy - y)
|
|
if d <= self.rr:
|
|
self.obmap[ix][iy] = True
|
|
break
|
|
|
|
@staticmethod
|
|
def get_motion_model():
|
|
# dx, dy, cost
|
|
motion = [[1, 0, 1],
|
|
[0, 1, 1],
|
|
[-1, 0, 1],
|
|
[0, -1, 1],
|
|
[-1, -1, math.sqrt(2)],
|
|
[-1, 1, math.sqrt(2)],
|
|
[1, -1, math.sqrt(2)],
|
|
[1, 1, math.sqrt(2)]]
|
|
|
|
return motion
|
|
|
|
|
|
def main():
|
|
print(__file__ + " start!!")
|
|
|
|
# start and goal position
|
|
sx = 10.0 # [m]
|
|
sy = 10.0 # [m]
|
|
gx = 50.0 # [m]
|
|
gy = 50.0 # [m]
|
|
grid_size = 2.0 # [m]
|
|
robot_radius = 1.0 # [m]
|
|
|
|
# set obstacle positions
|
|
ox, oy = [], []
|
|
for i in range(-10, 60):
|
|
ox.append(i)
|
|
oy.append(-10.0)
|
|
for i in range(-10, 60):
|
|
ox.append(60.0)
|
|
oy.append(i)
|
|
for i in range(-10, 61):
|
|
ox.append(i)
|
|
oy.append(60.0)
|
|
for i in range(-10, 61):
|
|
ox.append(-10.0)
|
|
oy.append(i)
|
|
for i in range(-10, 40):
|
|
ox.append(20.0)
|
|
oy.append(i)
|
|
for i in range(0, 40):
|
|
ox.append(40.0)
|
|
oy.append(60.0 - i)
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(ox, oy, ".k")
|
|
plt.plot(sx, sy, "og")
|
|
plt.plot(gx, gy, "ob")
|
|
plt.grid(True)
|
|
plt.axis("equal")
|
|
|
|
bi_bfs = BidirectionalBreadthFirstSearchPlanner(
|
|
ox, oy, grid_size, robot_radius)
|
|
rx, ry = bi_bfs.planning(sx, sy, gx, gy)
|
|
|
|
if show_animation: # pragma: no cover
|
|
plt.plot(rx, ry, "-r")
|
|
plt.pause(0.01)
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|