mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-23 04:18:13 -05:00
* Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc * Adding ndt mapping script and doc
54 lines
1.3 KiB
ReStructuredText
54 lines
1.3 KiB
ReStructuredText
.. _ndt_map:
|
||
|
||
Normal Distance Transform (NDT) map
|
||
------------------------------------
|
||
|
||
This is a NDT mapping example.
|
||
|
||
Normal Distribution Transform (NDT) is a map representation that uses normal distribution for observation point modeling.
|
||
|
||
Normal Distribution
|
||
~~~~~~~~~~~~~~~~~~~~~
|
||
|
||
Normal distribution consists of two parameters: mean :math:`\mu` and covariance :math:`\Sigma`.
|
||
|
||
:math:`\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})`
|
||
|
||
In the 2D case, :math:`\boldsymbol{\mu}` is a 2D vector and :math:`\boldsymbol{\Sigma}` is a 2x2 matrix.
|
||
|
||
In the matrix form, the probability density function of thr normal distribution is:
|
||
|
||
:math:`X=\frac{1}{\sqrt{(2 \pi)^2|\Sigma|}} \exp \left\{-\frac{1}{2}^t(x-\mu) \sum^{-1}(x-\mu)\right\}`
|
||
|
||
Normal Distance Transform mapping steps
|
||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
||
NDT mapping consists of two steps:
|
||
|
||
When we have a new observation like this:
|
||
|
||
.. figure:: raw_observations.png
|
||
|
||
First, we need to cluster the observation points.
|
||
This is done by using a grid based clustering algorithm.
|
||
|
||
The result is:
|
||
|
||
.. figure:: grid_clustering.png
|
||
|
||
Then, we need to fit a normal distribution to each grid cluster.
|
||
|
||
Black ellipse shows each NDT grid like this:
|
||
|
||
.. figure:: ndt_map1.png
|
||
|
||
.. figure:: ndt_map2.png
|
||
|
||
API
|
||
~~~~~
|
||
|
||
.. autoclass:: Mapping.ndt_map.ndt_map.NDTMap
|
||
:members:
|
||
:class-doc-from: class
|
||
|