Files
PythonRobotics/SLAM/GraphBasedSLAM/graph_based_slam.py
Atsushi Sakai 3e94bc7eee code clean up
2018-03-25 18:09:57 -07:00

290 lines
6.9 KiB
Python

"""
Graph SLAM example
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import copy
import itertools
import matplotlib.pyplot as plt
# Simulation parameter
Qsim = np.diag([0.2, math.radians(1.0)])**2
Rsim = np.diag([1.0, math.radians(10.0)])**2
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
STATE_SIZE = 3 # State size [x,y,yaw]
LM_SIZE = 2 # LM srate size [x,y]
C_SIGMA1 = 1.0
C_SIGMA2 = 0.1
C_SIGMA3 = 0.1
MAX_ITR = 20
show_animation = True
class Edge():
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d_t = 0.0
self.d_td = 0.0
self.yaw_t = 0.0
self.yaw_td = 0.0
self.angle_t = 0.0
self.angle_td = 0.0
self.id1 = 0
self.id2 = 0
def cal_observation_sigma(d):
sigma = np.zeros((3, 3))
sigma[0, 0] = (d * C_SIGMA1)**2
sigma[1, 1] = (d * C_SIGMA2)**2
sigma[2, 2] = C_SIGMA3**2
return sigma
def calc_rotational_matrix(angle):
Rt = np.matrix([[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1.0]])
return Rt
def calc_edges(xlist, zlist):
edges = []
zids = list(itertools.combinations(range(len(zlist)), 2))
for (t, td) in zids:
xt, yt, yawt = xlist[0, t], xlist[1, t], xlist[2, t]
xtd, ytd, yawtd = xlist[0, td], xlist[1, td], xlist[2, td]
dt, anglet, phit = zlist[t][0, 0], zlist[t][1, 0], zlist[t][2, 0]
dtd, angletd, phitd = zlist[td][0, 0], zlist[td][1, 0], zlist[td][2, 0]
edge = Edge()
tangle1 = yawt + anglet
tangle2 = yawt + anglet
t1 = dt * math.cos(tangle1)
t2 = dtd * math.cos(tangle2)
t3 = dt * math.sin(tangle1)
t4 = dtd * math.sin(tangle2)
edge.e[0, 0] = xtd - xt - t1 + t2
edge.e[1, 0] = ytd - yt - t3 + t4
edge.e[2, 0] = yawtd - yawt - phit + phitd
sig_t = cal_observation_sigma(dt)
sig_td = cal_observation_sigma(dtd)
Rt = calc_rotational_matrix(tangle1)
Rtd = calc_rotational_matrix(tangle2)
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
edge.d_t, edge.d_td = dt, dtd
edge.yaw_t, edge.yaw_td = yawt, yawtd
edge.angle_t, edge.angle_td = anglet, angletd
edge.id1, edge.id2 = t, td
edges.append(edge)
return edges
def calc_jacobian(edge):
t = edge.yaw_t + edge.angle_t
A = np.matrix([[-1.0, 0, edge.d_t * math.sin(t)],
[0, -1.0, -edge.d_t * math.cos(t)],
[0, 0, -1.0]])
td = edge.yaw_td + edge.angle_td
B = np.matrix([[1.0, 0, -edge.d_td * math.sin(td)],
[0, 1.0, edge.d_td * math.cos(td)],
[0, 0, 1.0]])
return A, B
def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * 3
id2 = edge.id2 * 3
H[id1:id1 + 3, id1:id1 + 3] += A.T * edge.omega * A
H[id1:id1 + 3, id2:id2 + 3] += A.T * edge.omega * B
H[id2:id2 + 3, id1:id1 + 3] += B.T * edge.omega * A
H[id2:id2 + 3, id2:id2 + 3] += B.T * edge.omega * B
b[id1:id1 + 3, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + 3, 0] += (B.T * edge.omega * edge.e)
return H, b
def graph_based_slam(xEst, PEst, u, z, hxDR, hz):
x_opt = copy.deepcopy(hxDR)
n = len(hz) * 3
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, hz)
# print("n edges:", len(edges))
H = np.matrix(np.zeros((n, n)))
b = np.matrix(np.zeros((n, 1)))
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
H[0:3, 0:3] += np.identity(3) * 10000 # to fix origin
dx = - np.linalg.inv(H).dot(b)
for i in range(len(hz)):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
diff = dx.T.dot(dx)
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
return x_opt, None
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 4)))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = angle + xTrue[2, 0]
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, anglen, phi, i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
ud = np.matrix([ud1, ud2]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.matrix([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F * x + B * u
return x
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0]])
# State Vector [x y yaw v]'
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
PEst = np.eye(STATE_SIZE)
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
# history
hxTrue = xTrue
hxDR = xTrue
hz = []
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hxDR = np.hstack((hxDR, xDR))
hz.append(z)
x_opt, PEst = graph_based_slam(xEst, PEst, ud, z, hxDR, hz)
# store data history
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation:
plt.cla()
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
plt.plot(xEst[0], xEst[1], ".r")
plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(x_opt[0, :]).flatten(),
np.array(x_opt[1, :]).flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main()