Files
PythonRobotics/Mapping/kmeans_clustering/kmeans_clustering.py
Göktuğ Karakaşlı d019e416ba exit on key
2019-12-07 14:30:18 +03:00

182 lines
3.8 KiB
Python

"""
Object clustering with k-means algorithm
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import matplotlib.pyplot as plt
import random
show_animation = True
class Clusters:
def __init__(self, x, y, nlabel):
self.x = x
self.y = y
self.ndata = len(self.x)
self.nlabel = nlabel
self.labels = [random.randint(0, nlabel - 1)
for _ in range(self.ndata)]
self.cx = [0.0 for _ in range(nlabel)]
self.cy = [0.0 for _ in range(nlabel)]
def kmeans_clustering(rx, ry, nc):
clusters = Clusters(rx, ry, nc)
clusters = calc_centroid(clusters)
MAX_LOOP = 10
DCOST_TH = 0.1
pcost = 100.0
for loop in range(MAX_LOOP):
# print("Loop:", loop)
clusters, cost = update_clusters(clusters)
clusters = calc_centroid(clusters)
dcost = abs(cost - pcost)
if dcost < DCOST_TH:
break
pcost = cost
return clusters
def calc_centroid(clusters):
for ic in range(clusters.nlabel):
x, y = calc_labeled_points(ic, clusters)
ndata = len(x)
clusters.cx[ic] = sum(x) / ndata
clusters.cy[ic] = sum(y) / ndata
return clusters
def update_clusters(clusters):
cost = 0.0
for ip in range(clusters.ndata):
px = clusters.x[ip]
py = clusters.y[ip]
dx = [icx - px for icx in clusters.cx]
dy = [icy - py for icy in clusters.cy]
dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)]
mind = min(dlist)
min_id = dlist.index(mind)
clusters.labels[ip] = min_id
cost += mind
return clusters, cost
def calc_labeled_points(ic, clusters):
inds = np.array([i for i in range(clusters.ndata)
if clusters.labels[i] == ic])
tx = np.array(clusters.x)
ty = np.array(clusters.y)
x = tx[inds]
y = ty[inds]
return x, y
def calc_raw_data(cx, cy, npoints, rand_d):
rx, ry = [], []
for (icx, icy) in zip(cx, cy):
for _ in range(npoints):
rx.append(icx + rand_d * (random.random() - 0.5))
ry.append(icy + rand_d * (random.random() - 0.5))
return rx, ry
def update_positions(cx, cy):
DX1 = 0.4
DY1 = 0.5
cx[0] += DX1
cy[0] += DY1
DX2 = -0.3
DY2 = -0.5
cx[1] += DX2
cy[1] += DY2
return cx, cy
def calc_association(cx, cy, clusters):
inds = []
for ic, _ in enumerate(cx):
tcx = cx[ic]
tcy = cy[ic]
dx = [icx - tcx for icx in clusters.cx]
dy = [icy - tcy for icy in clusters.cy]
dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)]
min_id = dlist.index(min(dlist))
inds.append(min_id)
return inds
def main():
print(__file__ + " start!!")
cx = [0.0, 8.0]
cy = [0.0, 8.0]
npoints = 10
rand_d = 3.0
ncluster = 2
sim_time = 15.0
dt = 1.0
time = 0.0
while time <= sim_time:
print("Time:", time)
time += dt
# simulate objects
cx, cy = update_positions(cx, cy)
rx, ry = calc_raw_data(cx, cy, npoints, rand_d)
clusters = kmeans_clustering(rx, ry, ncluster)
# for animation
if show_animation: # pragma: no cover
plt.cla()
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
inds = calc_association(cx, cy, clusters)
for ic in inds:
x, y = calc_labeled_points(ic, clusters)
plt.plot(x, y, "x")
plt.plot(cx, cy, "o")
plt.xlim(-2.0, 10.0)
plt.ylim(-2.0, 10.0)
plt.pause(dt)
print("Done")
if __name__ == '__main__':
main()