Files
PythonRobotics/PathTracking/stanley_controller/stanley_controller.py
2017-12-24 12:23:00 -08:00

166 lines
3.8 KiB
Python

"""
Path tracking simulation with Stanley steering control and PID speed control.
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
from pycubicspline import pycubicspline
k = 0.5 # control gain
Kp = 1.0 # speed propotional gain
dt = 0.1 # [s] time difference
L = 2.9 # [m] Wheel base of vehicle
max_steer = math.radians(30.0) # [rad] max steering angle
show_animation = True
class State:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.x = x
self.y = y
self.yaw = yaw
self.v = v
def update(state, a, delta):
if delta >= max_steer:
delta = max_steer
elif delta <= -max_steer:
delta = -max_steer
state.x = state.x + state.v * math.cos(state.yaw) * dt
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.yaw = pi_2_pi(state.yaw)
state.v = state.v + a * dt
return state
def PIDControl(target, current):
a = Kp * (target - current)
return a
def stanley_control(state, cx, cy, cyaw, pind):
ind, efa = calc_target_index(state, cx, cy)
if pind >= ind:
ind = pind
theta_e = pi_2_pi(cyaw[ind] - state.yaw)
theta_d = math.atan2(k * efa, state.v)
delta = theta_e + theta_d
return delta, ind
def pi_2_pi(angle):
while (angle > math.pi):
angle = angle - 2.0 * math.pi
while (angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def calc_target_index(state, cx, cy):
# calc frant axle position
fx = state.x + L * math.cos(state.yaw)
fy = state.y + L * math.sin(state.yaw)
# search nearest point index
dx = [fx - icx for icx in cx]
dy = [fy - icy for icy in cy]
d = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)]
mind = min(d)
ind = d.index(mind)
tyaw = pi_2_pi(math.atan2(fy - cy[ind], fx - cx[ind]) - state.yaw)
if tyaw > 0.0:
mind = - mind
return ind, mind
def main():
# target course
ax = [0.0, 100.0, 100.0, 50.0, 60.0]
ay = [0.0, 0.0, -30.0, -20.0, 0.0]
cx, cy, cyaw, ck, s = pycubicspline.calc_spline_course(ax, ay, ds=0.1)
target_speed = 30.0 / 3.6 # [m/s]
T = 100.0 # max simulation time
# initial state
state = State(x=-0.0, y=5.0, yaw=math.radians(20.0), v=0.0)
lastIndex = len(cx) - 1
time = 0.0
x = [state.x]
y = [state.y]
yaw = [state.yaw]
v = [state.v]
t = [0.0]
target_ind, mind = calc_target_index(state, cx, cy)
while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind = stanley_control(state, cx, cy, cyaw, target_ind)
state = update(state, ai, di)
time = time + dt
x.append(state.x)
y.append(state.y)
yaw.append(state.yaw)
v.append(state.v)
t.append(time)
if show_animation:
plt.cla()
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
plt.axis("equal")
plt.grid(True)
plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4])
plt.pause(0.001)
# Test
assert lastIndex >= target_ind, "Cannot goal"
if show_animation:
plt.plot(cx, cy, ".r", label="course")
plt.plot(x, y, "-b", label="trajectory")
plt.legend()
plt.xlabel("x[m]")
plt.ylabel("y[m]")
plt.axis("equal")
plt.grid(True)
flg, ax = plt.subplots(1)
plt.plot(t, [iv * 3.6 for iv in v], "-r")
plt.xlabel("Time[s]")
plt.ylabel("Speed[km/h]")
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()