mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 19:17:55 -05:00
* Add clothoidal path planner * Code quality/style fixes * Open up possibilities a bit by allowing control over theta1 values * Get line length under 80 chars for code style checks
145 lines
3.6 KiB
Python
145 lines
3.6 KiB
Python
"""
|
|
Clothoidal Path Planner
|
|
Author: Daniel Ingram (daniel-s-ingram)
|
|
Reference paper: https://www.researchgate.net/publication/237062806
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import scipy.integrate as integrate
|
|
from collections import namedtuple
|
|
from scipy.optimize import fsolve
|
|
from math import atan2, cos, hypot, pi, sin
|
|
from matplotlib import animation
|
|
|
|
Point = namedtuple("Point", ["x", "y"])
|
|
|
|
|
|
def draw_clothoids(
|
|
theta1_vals,
|
|
theta2_vals,
|
|
num_clothoids=75,
|
|
num_steps=100,
|
|
save_animation=False
|
|
):
|
|
p1 = Point(0, 0)
|
|
p2 = Point(10, 0)
|
|
clothoids = []
|
|
for theta1 in theta1_vals:
|
|
for theta2 in theta2_vals:
|
|
clothoid = get_clothoid_points(p1, p2, theta1, theta2, num_steps)
|
|
clothoids.append(clothoid)
|
|
|
|
fig = plt.figure(figsize=(10, 10))
|
|
x_min, x_max, y_min, y_max = get_axes_limits(clothoids)
|
|
axes = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max))
|
|
|
|
axes.plot(p1.x, p1.y, 'ro')
|
|
axes.plot(p2.x, p2.y, 'ro')
|
|
lines = [axes.plot([], [], 'b-')[0] for _ in range(len(clothoids))]
|
|
|
|
def animate(i):
|
|
for line, clothoid in zip(lines, clothoids):
|
|
x = [p.x for p in clothoid[:i]]
|
|
y = [p.y for p in clothoid[:i]]
|
|
line.set_data(x, y)
|
|
|
|
return lines
|
|
|
|
anim = animation.FuncAnimation(
|
|
fig,
|
|
animate,
|
|
frames=num_steps,
|
|
interval=25,
|
|
blit=True
|
|
)
|
|
if save_animation:
|
|
anim.save('clothoid.gif', fps=30, writer="imagemagick")
|
|
plt.show()
|
|
|
|
|
|
def get_clothoid_points(p1, p2, theta1, theta2, num_steps=100):
|
|
dx = p2.x - p1.x
|
|
dy = p2.y - p1.y
|
|
r = hypot(dx, dy)
|
|
|
|
phi = atan2(dy, dx)
|
|
phi1 = normalize_angle(theta1 - phi)
|
|
phi2 = normalize_angle(theta2 - phi)
|
|
delta = phi2 - phi1
|
|
|
|
try:
|
|
A = solve_for_root(phi1, phi2, delta)
|
|
L = compute_length(r, phi1, delta, A)
|
|
curv = compute_curvature(delta, A, L)
|
|
curv_rate = compute_curvature_rate(A, L)
|
|
except Exception as e:
|
|
print(f"Failed to generate clothoid points: {e}")
|
|
return None
|
|
|
|
points = []
|
|
for s in np.linspace(0, L, num_steps):
|
|
try:
|
|
x = p1.x + s*X(curv_rate*s**2, curv*s, theta1)
|
|
y = p1.y + s*Y(curv_rate*s**2, curv*s, theta1)
|
|
points.append(Point(x, y))
|
|
except Exception as e:
|
|
print(f"Skipping failed clothoid point: {e}")
|
|
|
|
return points
|
|
|
|
|
|
def X(a, b, c):
|
|
return integrate.quad(lambda t: cos((a/2)*t**2 + b*t + c), 0, 1)[0]
|
|
|
|
|
|
def Y(a, b, c):
|
|
return integrate.quad(lambda t: sin((a/2)*t**2 + b*t + c), 0, 1)[0]
|
|
|
|
|
|
def solve_for_root(theta1, theta2, delta):
|
|
initial_guess = 3*(theta1 + theta2)
|
|
return fsolve(lambda x: Y(2*x, delta - x, theta1), [initial_guess])
|
|
|
|
|
|
def compute_length(r, theta1, delta, A):
|
|
return r / X(2*A, delta - A, theta1)
|
|
|
|
|
|
def compute_curvature(delta, A, L):
|
|
return (delta - A) / L
|
|
|
|
|
|
def compute_curvature_rate(A, L):
|
|
return 2 * A / (L**2)
|
|
|
|
|
|
def normalize_angle(angle_rad):
|
|
return (angle_rad + pi) % (2 * pi) - pi
|
|
|
|
|
|
def get_axes_limits(clothoids):
|
|
x_vals = [p.x for clothoid in clothoids for p in clothoid]
|
|
y_vals = [p.y for clothoid in clothoids for p in clothoid]
|
|
|
|
x_min = min(x_vals)
|
|
x_max = max(x_vals)
|
|
y_min = min(y_vals)
|
|
y_max = max(y_vals)
|
|
|
|
x_offset = 0.1*(x_max - x_min)
|
|
y_offset = 0.1*(y_max - y_min)
|
|
|
|
x_min = x_min - x_offset
|
|
x_max = x_max + x_offset
|
|
y_min = y_min - y_offset
|
|
y_max = y_max + y_offset
|
|
|
|
return x_min, x_max, y_min, y_max
|
|
|
|
|
|
if __name__ == "__main__":
|
|
theta1_vals = [0]
|
|
theta2_vals = np.linspace(-pi, pi, 75)
|
|
draw_clothoids(theta1_vals, theta2_vals, save_animation=False)
|