Files
2019-02-03 11:24:53 +09:00

142 lines
2.7 KiB
Python

"""
LQR local path planning
author: Atsushi Sakai (@Atsushi_twi)
"""
import matplotlib.pyplot as plt
import numpy as np
import scipy.linalg as la
import math
import random
show_animation = True
MAX_TIME = 100.0 # Maximum simulation time
DT = 0.1 # Time tick
def LQRplanning(sx, sy, gx, gy):
rx, ry = [sx], [sy]
x = np.array([sx - gx, sy - gy]).reshape(2, 1) # State vector
# Linear system model
A, B = get_system_model()
found_path = False
time = 0.0
while time <= MAX_TIME:
time += DT
u = LQR_control(A, B, x)
x = A @ x + B @ u
rx.append(x[0, 0] + gx)
ry.append(x[1, 0] + gy)
d = math.sqrt((gx - rx[-1])**2 + (gy - ry[-1])**2)
if d <= 0.1:
# print("Goal!!")
found_path = True
break
# animation
if show_animation: # pragma: no cover
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
plt.plot(rx, ry, "-r")
plt.axis("equal")
plt.pause(1.0)
if not found_path:
print("Cannot found path")
return [], []
return rx, ry
def solve_DARE(A, B, Q, R):
"""
solve a discrete time_Algebraic Riccati equation (DARE)
"""
X = Q
maxiter = 150
eps = 0.01
for i in range(maxiter):
Xn = A.T * X * A - A.T * X * B * \
la.inv(R + B.T * X * B) * B.T * X * A + Q
if (abs(Xn - X)).max() < eps:
break
X = Xn
return Xn
def dlqr(A, B, Q, R):
"""Solve the discrete time lqr controller.
x[k+1] = A x[k] + B u[k]
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]
# ref Bertsekas, p.151
"""
# first, try to solve the ricatti equation
X = solve_DARE(A, B, Q, R)
# compute the LQR gain
K = la.inv(B.T @ X @ B + R) @ (B.T @ X @ A)
eigVals, eigVecs = la.eig(A - B @ K)
return K, X, eigVals
def get_system_model():
A = np.array([[DT, 1.0],
[0.0, DT]])
B = np.array([0.0, 1.0]).reshape(2, 1)
return A, B
def LQR_control(A, B, x):
Kopt, X, ev = dlqr(A, B, np.eye(2), np.eye(1))
u = -Kopt @ x
return u
def main():
print(__file__ + " start!!")
ntest = 10 # number of goal
area = 100.0 # sampling area
for i in range(ntest):
sx = 6.0
sy = 6.0
gx = random.uniform(-area, area)
gy = random.uniform(-area, area)
rx, ry = LQRplanning(sx, sy, gx, gy)
if show_animation: # pragma: no cover
plt.plot(sx, sy, "or")
plt.plot(gx, gy, "ob")
plt.plot(rx, ry, "-r")
plt.axis("equal")
plt.pause(1.0)
if __name__ == '__main__':
main()