mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-09 22:58:17 -05:00
Add RDNA4 OS support note in RELEASE.md and compat matrix (#4764)
* fix vllm link in release.md * add RDNA4 note in compat matrix * update hipcc github url to specific path in llvm-project repo * remove non-existant HIP upcoming changes reference * remove non-existant resolved issues internal link * fix hip upcoming changes url * duplicate amd smi known issue
This commit is contained in:
15
RELEASE.md
15
RELEASE.md
@@ -24,8 +24,6 @@ The release notes provide a summary of notable changes since the previous ROCm r
|
||||
|
||||
- [ROCm known issues](#rocm-known-issues)
|
||||
|
||||
- [ROCm resolved issues](#rocm-resolved-issues)
|
||||
|
||||
- [ROCm upcoming changes](#rocm-upcoming-changes)
|
||||
|
||||
```{note}
|
||||
@@ -69,7 +67,7 @@ ROCm documentation continues to be updated to provide clearer and more comprehen
|
||||
* The [Training a model with LLM Foundry](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.html) performance testing guide has been added. This guide describes how to use the preconfigured [ROCm/pytorch-training](https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5) training environment and [https://github.com/ROCm/MAD](https://github.com/ROCm/MAD) to test the training performance of the LLM Foundry framework on AMD Instinct MI325X and MI300X accelerators using the [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) model.
|
||||
* The [Training a model with PyTorch](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/pytorch-training.html) performance testing guide has been updated to feature the latest [ROCm/pytorch-training](https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5) Docker image (a preconfigured training environment with ROCm and PyTorch). Support for [Llama 3.3 70B](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) has been added.
|
||||
* The [Training a model with JAX MaxText](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.html) performance testing guide has been updated to feature the latest [ROCm/jax-training](https://hub.docker.com/layers/rocm/jax-training/maxtext-v25.5/images/sha256-4e0516358a227cae8f552fb866ec07e2edcf244756f02e7b40212abfbab5217b) Docker image (a preconfigured training environment with ROCm, JAX, and [MaxText](https://github.com/AI-Hypercomputer/maxtext)). Support for [Llama 3.3 70B](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) has been added.
|
||||
* The [vLLM inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html?model=pyt_vllm_qwq-32b) guide has been updated to feature the latest [ROCm/vLLM](https://hub.docker.com/layers/rocm/vllm/instinct_main/images/sha256-ad9062dea3483d59dedb17c67f7c49f30eebd6eb37c3fac0a171fb19696cc845) Docker image (a preconfigured environment for inference with ROCm and [vLLM](https://docs.vllm.ai/en/latest/)). Support for the [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) model has been added.
|
||||
* The [vLLM inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/vllm-benchmark.html?model=pyt_vllm_qwq-32b) guide has been updated to feature the latest [ROCm/vLLM](https://hub.docker.com/layers/rocm/vllm/latest/images/sha256-5c8b4436dd0464119d9df2b44c745fadf81512f18ffb2f4b5dc235c71ebe26b4) Docker image (a preconfigured environment for inference with ROCm and [vLLM](https://docs.vllm.ai/en/latest/)). Support for the [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) model has been added.
|
||||
* The [PyTorch inference performance testing](https://rocm.docs.amd.com/en/latest/how-to/rocm-for-ai/inference/pytorch-inference-benchmark.html?model=pyt_clip_inference) guide has been added, featuring the [ROCm/PyTorch](https://hub.docker.com/layers/rocm/pytorch/latest/images/sha256-ab1d350b818b90123cfda31363019d11c0d41a8f12a19e3cb2cb40cf0261137d) Docker image (a preconfigured inference environment with ROCm and PyTorch) with initial support for the [CLIP](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) and [Chai-1](https://huggingface.co/chaidiscovery/chai-1) models.
|
||||
|
||||
## Operating system and hardware support changes
|
||||
@@ -78,7 +76,8 @@ ROCm 6.4.1 introduces support for the RDNA4 architecture-based [Radeon AI PRO
|
||||
R9700](https://www.amd.com/en/products/graphics/workstations/radeon-ai-pro/ai-9000-series/amd-radeon-ai-pro-r9700.html),
|
||||
[Radeon RX 9070 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9070xt.html), and
|
||||
[Radeon RX 9060 XT](https://www.amd.com/en/products/graphics/desktops/radeon/9000-series/amd-radeon-rx-9060xt.html) GPUs
|
||||
for compute workloads. For details, see the full list of [Supported GPUs
|
||||
for compute workloads. Currently, these GPUs are only supported on Ubuntu 24.04.2, Ubuntu 22.04.5, RHEL 9.5, and RHEL 9.4.
|
||||
For details, see the full list of [Supported GPUs
|
||||
(Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/system-requirements.html#supported-gpus).
|
||||
|
||||
Operating system support remains unchanged in this release.
|
||||
@@ -390,7 +389,7 @@ Click {fab}`github` to go to the component's source code on GitHub.
|
||||
<th rowspan="2" colspan="2">Compilers</th>
|
||||
<td><a href="https://rocm.docs.amd.com/projects/HIPCC/en/docs-6.4.1/index.html">HIPCC</a></td>
|
||||
<td>1.1.1</td>
|
||||
<td><a href="https://github.com/ROCm/llvm-project/"><i
|
||||
<td><a href="https://github.com/ROCm/llvm-project/tree/amd-staging/amd/hipcc"><i
|
||||
class="fab fa-github fa-lg"></i></a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
@@ -569,6 +568,10 @@ will be addressed in a future ROCm release.
|
||||
When splitting a communicator using `ncclCommSplit` in some GPU configurations, MSCCL initialization can cause a segmentation fault. The recommended workaround is to disable MSCCL with `export RCCL_MSCCL_ENABLE=0`.
|
||||
This issue will be fixed in a future ROCm release.
|
||||
|
||||
### AMD SMI CPER entries not dumped continuously when using --follow
|
||||
|
||||
* When using the `--follow` flag with `amd-smi ras --cper`, CPER entries are not streamed continuously as intended. This will be fixed in an upcoming ROCm release.
|
||||
|
||||
## ROCm upcoming changes
|
||||
|
||||
The following changes to the ROCm software stack are anticipated for future releases.
|
||||
@@ -638,4 +641,4 @@ There are a number of upcoming changes planned for HIP runtime API in an upcomin
|
||||
that are not backward compatible with prior releases. Most of these changes increase
|
||||
alignment between HIP and CUDA APIs or behavior. Some of the upcoming changes are to
|
||||
clean up header files, remove namespace collision, and have a clear separation between
|
||||
`hipRTC` and HIP runtime. For more information refer to [HIP Upcoming changes](https://rocm.docs.amd.com/en/latest/about/release-notes.html#id15).
|
||||
`hipRTC` and HIP runtime. For more information refer to [HIP Upcoming changes](https://rocm.docs.amd.com/en/docs-6.4.0/about/release-notes.html#id15).
|
||||
|
||||
Reference in New Issue
Block a user