Updates to the vLLM optimization guide for MI300X/MI355X (#5554)

* Expand vLLM optimization guide for MI300X/MI355X with comprehensive AITER coverage. attention backend selection, environment variables (HIP/RCCL/Quick Reduce), parallelism strategies, quantization (FP8/FP4), engine tuning, CUDA graph modes, and multi-node scaling.

Co-authored-by: PinSiang <pinsiang.tan@embeddedllm.com>
Co-authored-by: Hongxia Yang <62075498+hongxiayang@users.noreply.github.com>
Co-authored-by: pinsiangamd <pinsiang.tan@amd.com>
Co-authored-by: Jeffrey Novotny <jnovotny@amd.com>
This commit is contained in:
peterjunpark
2025-10-22 12:54:25 -04:00
committed by GitHub
parent 6f8cf36279
commit cb8d21a0df
4 changed files with 1208 additions and 428 deletions

View File

@@ -27,6 +27,7 @@ ASICs
ASan
ASAN
ASm
Async
ATI
atomicRMW
AddressSanitizer
@@ -133,6 +134,7 @@ ELMo
ENDPGM
EPYC
ESXi
EP
EoS
etcd
fas
@@ -184,6 +186,7 @@ GPR
GPT
GPU
GPU's
GPUDirect
GPUs
GraphBolt
GraphSage
@@ -302,6 +305,7 @@ Makefiles
Matplotlib
Matrox
MaxText
MBT
Megablocks
Megatrends
Megatron
@@ -311,6 +315,7 @@ Meta's
Miniconda
MirroredStrategy
Mixtral
MLA
MosaicML
MoEs
Mooncake
@@ -353,6 +358,7 @@ OFED
OMM
OMP
OMPI
OOM
OMPT
OMPX
ONNX
@@ -398,6 +404,7 @@ Profiler's
PyPi
Pytest
PyTorch
QPS
Qcycles
Qwen
RAII
@@ -673,6 +680,7 @@ denoised
denoises
denormalize
dequantization
dequantized
dequantizes
deserializers
detections
@@ -788,6 +796,7 @@ linalg
linearized
linter
linux
llm
llvm
lm
localscratch
@@ -838,6 +847,7 @@ passthrough
pe
perfcounter
performant
piecewise
perl
pragma
pre
@@ -984,6 +994,7 @@ tokenizer
tokenizes
toolchain
toolchains
topk
toolset
toolsets
torchtitan
@@ -1011,6 +1022,7 @@ USM
UTCL
UTIL
utils
UX
vL
variational
vdi

File diff suppressed because it is too large Load Diff

View File

@@ -15,10 +15,9 @@ using PyTorch. It delves into specific workloads such as
:ref:`model inference <mi300x-vllm-optimization>`, offering strategies to
enhance efficiency.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>`
that streamline optimization as well as advanced techniques like
:ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>` for
meticulous tuning.
The following topics highlight :ref:`auto-tunable configurations <mi300x-auto-tune>` as
well as :ref:`Triton kernel optimization <mi300x-triton-kernel-performance-optimization>`
for meticulous tuning.
Workload tuning strategy
========================
@@ -86,23 +85,22 @@ Optimize model inference with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
vLLM provides tools and techniques specifically designed for efficient model
inference on AMD Instinct MI300X GPUs. See :ref:`fine-tuning-llms-vllm`
for installation guidance. Optimizing performance with vLLM
involves configuring tensor parallelism, leveraging advanced features, and
ensuring efficient execution. Heres how to optimize vLLM performance:
inference on AMD Instinct GPUs. See the official `vLLM installation docs
<https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html>`__ for
installation guidance. Optimizing performance with vLLM involves configuring
tensor parallelism, leveraging advanced features, and ensuring efficient
execution.
* Tensor parallelism: Configure the
:ref:`tensor-parallel-size parameter <mi300x-vllm-multiple-gpus>` to distribute
tensor computations across multiple GPUs. Adjust parameters such as
``batch-size``, ``input-len``, and ``output-len`` based on your workload.
* Configuration for vLLM: Set :ref:`parameters <mi300x-vllm-optimization>`
according to workload requirements. Benchmark performance to understand
characteristics and identify bottlenecks.
* Configuration for vLLM: Set engine arguments according to workload
requirements.
* Benchmarking and performance metrics: Measure latency and throughput to
evaluate performance.
.. seealso::
See :doc:`vllm-optimization`.
.. _mi300x-auto-tune:
Auto-tunable configurations
@@ -120,8 +118,7 @@ characteristics. For example:
your specific hardware.
* Triton: Use :ref:`Tritons auto-tuning features <mi300x-autotunable-kernel-config>`
to explore various kernel configurations and automatically select the
best-performing ones.
to explore various kernel configurations and select the best-performing ones.
Manual tuning
^^^^^^^^^^^^^
@@ -328,381 +325,6 @@ hardware counters are also included.
ROCm Systems Profiler timeline trace example.
.. _mi300x-vllm-optimization:
vLLM performance optimization
=============================
vLLM is a high-throughput and memory efficient inference and serving engine for large language models that has gained traction in the AI community for
its performance and ease of use. See :ref:`fine-tuning-llms-vllm` for a primer on vLLM with ROCm.
Performance environment variables
---------------------------------
The following performance tips are not *specific* to vLLM -- they are general
but relevant in this context. You can tune the following vLLM parameters to
achieve optimal request latency and throughput performance.
* As described in `Environment variables (MI300X)
<https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html#environment-variables>`_,
the environment variable ``HIP_FORCE_DEV_KERNARG`` can improve vLLM
performance. Set it to ``export HIP_FORCE_DEV_KERNARG=1``.
* Set the :ref:`RCCL environment variable <mi300x-rccl>` ``NCCL_MIN_NCHANNELS``
to ``112`` to increase the number of channels on MI300X to potentially improve
performance.
* Set the environment variable ``TORCH_BLAS_PREFER_HIPBLASLT=1`` to use hipBLASLt to improve performance.
Auto-tuning using PyTorch TunableOp
------------------------------------
Since vLLM is based on the PyTorch framework, PyTorch TunableOp can be used for auto-tuning.
You can run auto-tuning with TunableOp in two simple steps without modifying your code:
* Enable TunableOp and tuning. Optionally, enable verbose mode:
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_VERBOSE=1 your_vllm_script.sh
* Enable TunableOp and disable tuning and measure.
.. code-block:: shell
PYTORCH_TUNABLEOP_ENABLED=1 PYTORCH_TUNABLEOP_TUNING=0 your_vllm_script.sh
Learn more about TunableOp in the :ref:`PyTorch TunableOp <mi300x-tunableop>` section.
Performance tuning based on vLLM engine configurations
-------------------------------------------------------
The following subsections describe vLLM-specific configurations for performance tuning.
You can tune the following vLLM parameters to achieve optimal performance.
* ``tensor_parallel_size``
* ``gpu_memory_utilization``
* ``dtype``
* ``enforce_eager``
* ``kv_cache_dtype``
* ``input_len``
* ``output_len``
* ``max_num_seqs``
* ``num_scheduler_steps``
* ``max_model_len``
* ``enable_chunked_prefill``
* ``distributed_executor_backend``
* ``max_seq_len_to_capture``
Refer to `vLLM documentation <https://docs.vllm.ai/en/latest/models/performance.html>`_
for additional performance tips. :ref:`fine-tuning-llms-vllm` describes vLLM
usage with ROCm.
ROCm provides a prebuilt optimized Docker image for validating the performance
of LLM inference with vLLM on MI300X Series GPUs. The Docker image includes
ROCm, vLLM, and PyTorch. For more information, see
:doc:`/how-to/rocm-for-ai/inference/benchmark-docker/vllm`.
.. _mi300x-vllm-throughput-measurement:
Evaluating performance by throughput measurement
-------------------------------------------------
This tuning guide evaluates the performance of LLM inference workloads by measuring throughput in tokens per second (TPS). Throughput can be assessed using both real-world and synthetic data, depending on your evaluation goals.
Refer to the benchmarking script located at ``benchmarks/benchmark_throughput.py`` in the `vLLM repository <https://github.com/ROCm/vllm/blob/main/benchmarks/benchmark_throughput.py>`_.
Use this script to measure throughput effectively. You can assess throughput using real-world and synthetic data, depending on your evaluation goals.
* For realistic performance evaluation, you can use datasets like Hugging Face's
``ShareGPT_V3_unfiltered_cleaned_split.json``. This dataset includes real-world conversational
data, making it a good representation of typical use cases for language models. Download it using
the following command:
.. code-block:: shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
* For standardized benchmarking, you can set fixed input and output token
lengths. Synthetic prompts provide consistent benchmarking runs, making it
easier to compare performance across different models or configurations.
Additionally, a controlled environment simplifies analysis.
By balancing real-world data and synthetic data approaches, you can get a well-rounded understanding of model performance in varied scenarios.
.. _mi300x-vllm-single-node:
Maximizing vLLM instances on a single node
------------------------------------------
The general guideline is to maximize per-node throughput by running as many vLLM instances as possible.
However, running too many instances might lead to insufficient memory for the KV-cache, which can affect performance.
The Instinct MI300X GPU is equipped with 192 GB of HBM3 memory capacity and bandwidth.
For models that fit in one GPU -- to maximize the accumulated throughput -- you can run as many as eight vLLM instances
simultaneously on one MI300X node (with eight GPUs). To do so, use the GPU isolation environment
variable ``CUDA_VISIBLE_DEVICES``.
For example, this script runs eight instances of vLLM for throughput benchmarking at the same time
with a model that can fit in one GPU:
.. code-block:: shell
for i in $(seq 0 7);
do
CUDA_VISIBLE_DEVICES="$i" python3 /app/vllm/benchmarks/benchmark_throughput.py -tp 1 --dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
done
The total throughput achieved by running ``N`` instances of vLLM is generally much higher than running a
single vLLM instance across ``N`` GPUs simultaneously (that is, configuring ``tensor_parallel_size`` as N or
using the ``-tp`` N option, where ``1 < N ≤ 8``).
vLLM on MI300X GPUs can run a variety of model weights, including Llama 2 (7b, 13b, 70b), Llama 3 (8b, 70b), Qwen2 (7b, 72b), Mixtral-8x7b, Mixtral-8x22b, and so on.
Notable configurations include Llama2-70b and Llama3-70b models on a single MI300X GPU, and the Llama3.1 405b model can fit on one single node with 8 MI300X GPUs.
.. _mi300x-vllm-gpu-memory-utilization:
Configure the gpu_memory_utilization parameter
----------------------------------------------
There are two ways to increase throughput by configuring ``gpu-memory-utilization`` parameter.
1. Increase ``gpu-memory-utilization`` to improve the throughput for a single instance as long as
it does not incur HIP or CUDA Out Of Memory. The default ``gpu-memory-utilization`` is 0.9.
You can set it to ``>0.9`` and ``<1``.
For example, below benchmarking command set the ``gpu-memory-utilization`` as 0.98, or 98%.
.. code-block:: shell
/vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.98 --input-len 1024 --output-len 128 --model /path/to/model
2. Decrease ``gpu-memory-utilization`` to maximize the number of vLLM instances on the same GPU.
Specify GPU memory utilization to run as many instances of vLLM as possible on a single
GPU. However, too many instances can result in no memory for KV-cache. For small models, run
multiple instances of vLLM on the same GPU by specifying a smaller ``gpu-memory-utilization`` -- as
long as it would not cause HIP Out Of Memory.
For example, run two instances of the Llama3-8b model at the same time on a single GPU by specifying
``--gpu-memory-utilization`` to 0.4 (40%) as follows (on GPU ``0``):
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
CUDA_VISIBLE_DEVICES=0 python3 /vllm-workspace/benchmarks/benchmark_throughput.py --gpu-memory-utilization 0.4
--dataset "/path/to/dataset/ShareGPT_V3_unfiltered_cleaned_split.json" --model /path/to/model &
See :ref:`vllm-engine-args` for other performance suggestions.
.. _mi300x-vllm-multiple-gpus:
Run vLLM on multiple GPUs
-------------------------
The two main reasons to use multiple GPUs are:
* The model size is too big to run vLLM using one GPU as it results HIP Out of Memory.
* To achieve better latency when using a single GPU is not desirable.
To run one vLLM instance on multiple GPUs, use the ``-tp`` or ``--tensor-parallel-size`` option to
specify multiple GPUs. Optionally, use the ``CUDA_VISIBLE_DEVICES`` environment variable to specify
the GPUs.
For example, you can use two GPUs to start an API server on port 8000:
.. code-block:: shell
python -m vllm.entrypoints.api_server --model /path/to/model --dtype
float16 -tp 2 --port 8000 &
To achieve both latency and throughput performance for serving, you can run multiple API servers on
different GPUs by specifying different ports for each server and use ``CUDA_VISIBLE_DEVICES`` to
specify the GPUs for each server, for example:
.. code-block:: shell
CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8000 &
CUDA_VISIBLE_DEVICES=2,3 python -m vllm.entrypoints.api_server --model
/path/to/model --dtype float16 -tp 2 --port 8001 &
Choose an attention backend
---------------------------
vLLM on ROCm supports two attention backends, each suitable for different use cases and performance
requirements:
- **Triton Flash Attention** - For benchmarking, run vLLM scripts at
least once as a warm-up step so Triton can perform auto-tuning before
collecting benchmarking numbers. This is the default setting.
- **Composable Kernel (CK) Flash Attention** - To use CK Flash Attention, specify
the environment variable as ``export VLLM_USE_TRITON_FLASH_ATTN=0``.
Refer to :ref:`Model acceleration libraries <acceleration-flash-attention>`
to learn more about Flash Attention with Triton or CK backends.
.. _vllm-engine-args:
vLLM engine arguments
---------------------
The following are configuration suggestions to potentially improve performance with vLLM. See
`vLLM's engine arguments documentation <https://docs.vllm.ai/en/latest/serving/engine_args.html>`_
for a full list of configurable engine arguments.
Configure the max-num-seqs parameter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Increase the ``max-num-seqs`` parameter from the default ``256`` to ``512`` (``--max-num-seqs
512``). This increases the maximum number of sequences per iteration and can improve throughput.
Use the float16 dtype
^^^^^^^^^^^^^^^^^^^^^
The default data type (``dtype``) is specified in the models configuration file. For instance, some models use ``torch.bfloat16`` as their default ``dtype``.
Use float16 (``--dtype float16``) for better performance.
Multi-step scheduling
^^^^^^^^^^^^^^^^^^^^^
Setting ``num-scheduler-steps`` for multi-step scheduling can increase performance. Set it between 10 to 15 (``--num-scheduler-steps 10``).
Distributed executor backend
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The vLLM supports two modes of distributed executor backend: ``ray`` and ``mp``. When using the `<https://github.com/ROCm/vllm>`__ fork, using the ``mp``
backend (``--distributed_executor_backend mp``) is recommended.
Graph mode max-seq-len-to-capture
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Maximum sequence length covered by CUDA graphs. In the default mode (where ``enforce_eager`` is ``False``), when a sequence has context length
larger than this, vLLM engine falls back to eager mode. The default is 8192.
When working with models that support long context lengths, set the parameter ``--max-seq-len-to-capture`` to 16384.
See this `vLLM blog <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`__ for details.
An example of long context length model is Qwen2-7b.
Whether to enable chunked prefill
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another vLLM performance tip is to enable chunked prefill to improve
throughput. Chunked prefill allows large prefills to be chunked into
smaller chunks and batched together with decode requests.
You can enable the feature by specifying ``--enable-chunked-prefill`` in the
command line or setting ``enable_chunked_prefill=True`` in the LLM
constructor. 
As stated in `vLLM's documentation, <https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill>`__,
you can tune the performance by changing ``max_num_batched_tokens``. By
default, it is set to 512 and optimized for ITL (inter-token latency).
Smaller ``max_num_batched_tokens`` achieves better ITL because there are
fewer prefills interrupting decodes.
Higher ``max_num_batched_tokens`` achieves better TTFT (time to the first
token) as you can put more prefill to the batch.
You might experience noticeable throughput improvements when
benchmarking on a single GPU or 8 GPUs using the vLLM throughput
benchmarking script along with the ShareGPT dataset as input.
In the case of fixed ``input-len``/``output-len``, for some configurations,
enabling chunked prefill increases the throughput. For some other
configurations, the throughput may be worse and elicit a need to tune
parameter ``max_num_batched_tokens`` (for example, increasing ``max_num_batched_tokens`` value to 4096 or larger).
.. note::
Chunked prefill is no longer recommended. See the vLLM blog: `Serving LLMs on AMD MI300X: Best Practices <https://blog.vllm.ai/2024/10/23/vllm-serving-amd.html>`_ (October 2024).
Quantization support
---------------------
Quantization reduces the precision of the models weights and activations, which significantly decreases the memory footprint.
``fp8(w8a8)`` and ``AWQ`` quantization are supported for ROCm.
FP8 quantization
^^^^^^^^^^^^^^^^^
`<https://github.com/ROCm/vllm>`__ supports FP8 (8-bit floating point) weight and activation quantization using hardware acceleration on the Instinct MI300X.
Quantization of models with FP8 allows for a 2x reduction in model memory requirements and up to a 1.6x improvement in throughput with minimal impact on accuracy.
AMD publishes Quark Quantized OCP FP8 models on Hugging Face. For example:
* `Llama-3.1-8B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-8B-Instruct-FP8-KV>`__
* `Llama-3.1-70B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-70B-Instruct-FP8-KV>`__
* `Llama-3.1-405B-Instruct-FP8-KV <https://huggingface.co/amd/Llama-3.1-405B-Instruct-FP8-KV>`__
* `Mixtral-8x7B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x7B-Instruct-v0.1-FP8-KV>`__
* `Mixtral-8x22B-Instruct-v0.1-FP8-KV <https://huggingface.co/amd/Mixtral-8x22B-Instruct-v0.1-FP8-KV>`__
To enable vLLM benchmarking to run on fp8 quantized models, use the ``--quantization`` parameter with value ``fp8`` (``--quantization fp8``).
AWQ quantization
^^^^^^^^^^^^^^^^
You can quantize your own models by installing AutoAWQ or picking one of the 400+ models on Hugging Face. Be aware that
that AWQ support in vLLM is currently underoptimized.
To enable vLLM to run on ``awq`` quantized models, using ``--quantization`` parameter with ``awq`` (``--quantization awq``).
You can find more specifics in the `vLLM AutoAWQ documentation <https://docs.vllm.ai/en/stable/quantization/auto_awq.html>`_.
fp8 kv-cached-dtype
^^^^^^^^^^^^^^^^^^^^^^^
Using ``fp8 kv-cache dtype`` can improve performance as it reduces the size
of ``kv-cache``. As a result, it reduces the cost required for reading and
writing the ``kv-cache``.
To use this feature, specify ``--kv-cache-dtype`` as ``fp8``.
To specify the quantization scaling config, use the
``--quantization-param-path`` parameter. If the parameter is not specified,
the default scaling factor of ``1`` is used, which can lead to less accurate
results. To generate ``kv-cache`` scaling JSON file, see `FP8 KV
Cache <https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_kv_cache/README.md>`__
in the vLLM GitHub repository.
Two sample Llama scaling configuration files are in vLLM for ``llama2-70b`` and
``llama2-7b``.
If building the vLLM using
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile.rocm>`_
for ``llama2-70b`` scale config, find the file at
``/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json`` at
runtime.
Below is a sample command to run benchmarking with this feature enabled
for the ``llama2-70b`` model:
.. code-block:: shell
python3 /vllm-workspace/benchmarks/benchmark_throughput.py --model \
/path/to/llama2-70b-model --kv-cache-dtype "fp8" \
--quantization-param-path \
"/vllm-workspace/tests/fp8_kv/llama2-70b-fp8-kv/kv_cache_scales.json" \
--input-len 512 --output-len 256 --num-prompts 500
.. _mi300x-tunableop:
PyTorch TunableOp
@@ -946,33 +568,33 @@ for details.
.. code-block:: shell
HIP_FORCE_DEV_KERNARG=1  hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
HIP_FORCE_DEV_KERNARG=1 hipblaslt-bench --alpha 1 --beta 0 -r f16_r \
--a_type f16_r --b_type f8_r --compute_type f32_f16_r \
--initialization trig_float  --cold_iters 100 --iters 1000 --rotating 256
--initialization trig_float --cold_iters 100 --iters 1000 --rotating 256
* Example 2: Benchmark forward epilogues and backward epilogues
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_RELU: "--activation_type relu";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_BIAS: "--bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_RELU_BIAS: "--activation_type relu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_GELU: "--activation_type gelu";``
* ``HIPBLASLT_EPILOGUE_DGELU": --activation_type gelu --gradient";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_BIAS: "--activation_type gelu --bias_vector";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX: "--activation_type gelu --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_GELU_AUX_BIAS: "--activation_type gelu --bias_vector --use_e";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_DGELU_BGRAD: "--activation_type gelu --bias_vector --gradient";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADA: "--bias_vector --gradient --bias_source a";``
* ``HIPBLASLT_EPILOGUE_BGRADB:  "--bias_vector --gradient --bias_source b";``
* ``HIPBLASLT_EPILOGUE_BGRADB: "--bias_vector --gradient --bias_source b";``
hipBLASLt auto-tuning using hipblaslt-bench
@@ -1031,26 +653,26 @@ The tuning tool is a two-step tool. It first runs the benchmark, then it creates
.. code-block:: python
defaultBenchOptions = {"ProblemType": {
    "TransposeA": 0,
    "TransposeB": 0,
    "ComputeInputDataType": "s",
    "ComputeDataType": "s",
    "DataTypeC": "s",
    "DataTypeD": "s",
    "UseBias": False
}, "TestConfig": {
    "ColdIter": 20,
    "Iter": 100,
    "AlgoMethod": "all",
    "RequestedSolutions": 2, # Only works in AlgoMethod heuristic
    "SolutionIndex": None, # Only works in AlgoMethod index
    "ApiMethod": "cpp",
    "RotatingBuffer": 0,
}, "TuningParameters": {
    "SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {}  # Currently unused
defaultBenchOptions = {"ProblemType": {
"TransposeA": 0,
"TransposeB": 0,
"ComputeInputDataType": "s",
"ComputeDataType": "s",
"DataTypeC": "s",
"DataTypeD": "s",
"UseBias": False
}, "TestConfig": {
"ColdIter": 20,
"Iter": 100,
"AlgoMethod": "all",
"RequestedSolutions": 2, # Only works in AlgoMethod heuristic
"SolutionIndex": None, # Only works in AlgoMethod index
"ApiMethod": "cpp",
"RotatingBuffer": 0,
}, "TuningParameters": {
"SplitK": [0]
}, "ProblemSizes": []}
defaultCreateLogicOptions = {} # Currently unused
* ``TestConfig``
1. ``ColdIter``: This is number the warm-up iterations before starting the kernel benchmark.
@@ -1230,7 +852,7 @@ command:
.. code-block:: shell
merge.py original_dir new_tuned_yaml_dir output_dir 
merge.py original_dir new_tuned_yaml_dir output_dir
The following table describes the logic YAML files.
@@ -1833,7 +1455,7 @@ de-quantize the ``int4`` key-value from the ``int4`` data type to ``fp16``.
From the IR snippet, you can see ``i32`` data is loaded from global memory to
registers (``%190``). With a few element-wise operations in registers, it is
stored in shared memory (``%269``) for the transpose operation (``%270``), which
stored in shared memory (``%269``) for the transpose operation (``%270``), which
needs data movement across different threads. With the transpose done, it is
loaded from LDS to register again (``%276``), and with a few more
element-wise operations, it is stored to LDS again (``%298``). The last step
@@ -1967,7 +1589,7 @@ something similar to the following:
loaded at: [0x7fd4f100c000-0x7fd4f100e070]
The kernel name and the code object file should be listed. In the
example above, the kernel name is vector_add_assert_trap, but this might
example above, the kernel name is vector_add_assert_trap, but this might
also look like:
.. code-block:: text
@@ -2081,3 +1703,8 @@ Hardware efficiency is maximized with 4 or fewer HIP streams. These environment
configuration to two compute streams and two RCCL streams, aligning with this best practice.
Additionally, RCCL is often pre-optimized for MI300 systems in production by querying the node
topology during startup, reducing the need for extensive manual tuning.
Further reading
===============
* :doc:`vllm-optimization`

View File

@@ -134,6 +134,8 @@ subtrees:
title: Profile and debug
- file: how-to/rocm-for-ai/inference-optimization/workload.rst
title: Workload optimization
- file: how-to/rocm-for-ai/inference-optimization/vllm-optimization.rst
title: vLLM V1 performance optimization
- url: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
title: AI tutorials