mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-12 15:34:58 -05:00
Add MPT-30B + LLM Foundry doc (#4704)
* add mpt-30b doc * add tunableop note * update MPT doc * add section * update wordlist * fix flash attention version * update "applies to" * address review feedback * Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com> * Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com> * Update docs/how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry.rst Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com> * update docker details to pytorch-training-v25.5 * update --------- Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
This commit is contained in:
@@ -57,6 +57,7 @@ article_pages = [
|
||||
{"file": "how-to/rocm-for-ai/training/prerequisite-system-validation", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/megatron-lm", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/pytorch-training", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry", "os": ["linux"]},
|
||||
{"file": "how-to/rocm-for-ai/training/scale-model-training", "os": ["linux"]},
|
||||
|
||||
{"file": "how-to/rocm-for-ai/fine-tuning/index", "os": ["linux"]},
|
||||
|
||||
@@ -0,0 +1,168 @@
|
||||
.. meta::
|
||||
:description: How to train a model using LLM Foundry for ROCm.
|
||||
:keywords: ROCm, AI, LLM, train, PyTorch, torch, Llama, flux, tutorial, docker
|
||||
|
||||
******************************************
|
||||
Training MPT-30B with LLM Foundry and ROCm
|
||||
******************************************
|
||||
|
||||
MPT-30B is a 30-billion parameter decoder-style transformer-based model from
|
||||
the Mosaic Pretrained Transformer (MPT) family -- learn more about it in
|
||||
MosaicML's research blog `MPT-30B: Raising the bar for open-source foundation
|
||||
models <https://www.databricks.com/blog/mpt-30b>`_.
|
||||
|
||||
ROCm and `<https://github.com/ROCm/MAD>`__ provide a pre-configured training
|
||||
environment for the MPT-30B model using the ``rocm/pytorch-training:v25.5``
|
||||
base `Docker image <https://hub.docker.com/layers/rocm/pytorch-training/v25.5/images/sha256-d47850a9b25b4a7151f796a8d24d55ea17bba545573f0d50d54d3852f96ecde5>`_
|
||||
and the `LLM Foundry <https://github.com/mosaicml/llm-foundry>`_ framework.
|
||||
This environment packages the following software components to train
|
||||
on AMD Instinct MI300X series accelerators:
|
||||
|
||||
+--------------------------+--------------------------------+
|
||||
| Software component | Version |
|
||||
+==========================+================================+
|
||||
| ROCm | 6.3.4 |
|
||||
+--------------------------+--------------------------------+
|
||||
| PyTorch | 2.7.0a0+git6374332 |
|
||||
+--------------------------+--------------------------------+
|
||||
| Flash Attention | 3.0.0.post1 |
|
||||
+--------------------------+--------------------------------+
|
||||
|
||||
Using this image, you can build, run, and test the training process
|
||||
for MPT-30B with access to detailed logs and performance metrics.
|
||||
|
||||
System validation
|
||||
=================
|
||||
|
||||
If you have already validated your system settings, including NUMA
|
||||
auto-balancing, skip this step. Otherwise, complete the :ref:`system validation
|
||||
and optimization steps <train-a-model-system-validation>` to set up your system
|
||||
before starting training.
|
||||
|
||||
Getting started
|
||||
===============
|
||||
|
||||
The following procedures help you set up the training environment in a
|
||||
reproducible Docker container. This training environment is tailored for
|
||||
training MPT-30B using LLM Foundry and the specific model configurations outlined.
|
||||
Other configurations and run conditions outside those described in this
|
||||
document are not validated.
|
||||
|
||||
.. tab-set::
|
||||
|
||||
.. tab-item:: MAD-integrated benchmarking
|
||||
|
||||
On your host machine, clone the ROCm Model Automation and Dashboarding
|
||||
(`<https://github.com/ROCm/MAD>`__) repository to a local directory and
|
||||
install the required packages.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
pip install -r requirements.txt
|
||||
|
||||
Use this command to initiate the MPT-30B training benchmark.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
python3 tools/run_models.py --tags pyt_mpt30b_training --keep-model-dir --live-output --clean-docker-cache
|
||||
|
||||
.. tip::
|
||||
|
||||
If you experience data download failures, set the
|
||||
``MAD_SECRETS_HFTOKEN`` variable to your Hugging Face access token. See
|
||||
`User access tokens <https://huggingface.co/docs/hub/security-tokens>`_
|
||||
for details.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
||||
|
||||
.. note::
|
||||
|
||||
For improved performance (training throughput), consider enabling TunableOp.
|
||||
By default, ``pyt_mpt30b_training`` runs with TunableOp disabled. To enable it,
|
||||
run ``tools/run_models.py`` with the ``--tunableop on`` argument or edit the
|
||||
``models.json`` configuration before running training.
|
||||
|
||||
Although this might increase the initial training time, it can result in a performance gain.
|
||||
|
||||
.. tab-item:: Standalone benchmarking
|
||||
|
||||
To set up the training environment, clone the
|
||||
`<https://github.com/ROCm/MAD>`__ repo and build the Docker image. In
|
||||
this snippet, the image is named ``mosaic_mpt30_image``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD
|
||||
|
||||
docker build --build-arg MAD_SYSTEM_GPU_ARCHITECTURE=gfx942 -f docker/pyt_mpt30b_training.ubuntu.amd.Dockerfile -t mosaic_mpt30_image .
|
||||
|
||||
Start a ``mosaic_mpt30_image`` container using the following command.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
docker run -it --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --shm-size=8G mosaic_mpt30_image
|
||||
|
||||
In the Docker container, clone the `<https://github.com/ROCm/MAD>`__
|
||||
repository and navigate to the benchmark scripts directory at
|
||||
``/workspace/MAD/scripts/pyt_mpt30b_training``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
git clone https://github.com/ROCm/MAD
|
||||
cd MAD/scripts/pyt_mpt30b_training
|
||||
|
||||
To initiate the training process, use the following command. This script uses the hyperparameters defined in
|
||||
``mpt-30b-instruct.yaml``.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
source run.sh
|
||||
|
||||
.. note::
|
||||
|
||||
For improved performance (training throughput), consider enabling TunableOp.
|
||||
To enable it, add the ``--tunableop on`` flag.
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
source run.sh --tunableop on
|
||||
|
||||
Although this might increase the initial training time, it can result in a performance gain.
|
||||
|
||||
Interpreting the output
|
||||
=======================
|
||||
|
||||
The training output will be displayed in the terminal and simultaneously saved
|
||||
to the ``output.txt`` file in the current directory. Key performance metrics will
|
||||
also be extracted and appended to the ``perf_pyt_mpt30b_training.csv`` file.
|
||||
|
||||
Key performance metrics include:
|
||||
|
||||
- Training logs: Real-time display of loss metrics, accuracy, and training progress.
|
||||
|
||||
- Model checkpoints: Periodically saved model snapshots for potential resume or evaluation.
|
||||
|
||||
- Performance metrics: Detailed summaries of training speed and training loss metrics.
|
||||
|
||||
- Performance (throughput/samples_per_sec)
|
||||
|
||||
Overall throughput, measuring the total samples processed per second. Higher values indicate better hardware utilization.
|
||||
|
||||
- Performance per device (throughput/samples_per_sec)
|
||||
|
||||
Throughput on a per-device basis, showing how each GPU or CPU is performing.
|
||||
|
||||
- Language Cross Entropy (metrics/train/LanguageCrossEntropy)
|
||||
|
||||
Measures prediction accuracy. Lower cross entropy suggests the model’s output is closer to the expected distribution.
|
||||
|
||||
- Training loss (loss/train/total)
|
||||
|
||||
Overall training loss. A decreasing trend indicates the model is learning effectively.
|
||||
|
||||
|
||||
@@ -46,6 +46,8 @@ subtrees:
|
||||
title: Train a model with PyTorch
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext
|
||||
title: Train a model with JAX MaxText
|
||||
- file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
|
||||
title: Train a model with LLM Foundry
|
||||
- file: how-to/rocm-for-ai/training/scale-model-training.rst
|
||||
title: Scale model training
|
||||
|
||||
|
||||
Reference in New Issue
Block a user