Docs: frameworks compatibility- ray and llama.cpp (#5273)

This commit is contained in:
anisha-amd
2025-09-09 11:02:30 -04:00
committed by GitHub
parent 4f53183696
commit db43d18c37
8 changed files with 293 additions and 4 deletions

View File

@@ -501,6 +501,7 @@ Unhandled
VALU
VBIOS
VCN
verl's
VGPR
VGPRs
VM

View File

@@ -35,6 +35,8 @@ ROCm Version,6.4.3,6.4.2,6.4.1,6.4.0,6.3.3,6.3.2,6.3.1,6.3.0,6.2.4,6.2.2,6.2.1,6
:doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_,N/A,N/A,N/A,2.4.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,
:doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat]_,N/A,N/A,N/A,N/A,N/A,N/A,N/A,0.7.0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_,N/A,N/A,N/A,N/A,N/A,1.8.0b1,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat]_,N/A,N/A,2.48.0.post0,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
:doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_,N/A,N/A,N/A,b5997,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A,N/A
`ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_,1.2,1.2,1.2,1.2,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.17.3,1.14.1,1.14.1
,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,
1 ROCm Version 6.4.3 6.4.2 6.4.1 6.4.0 6.3.3 6.3.2 6.3.1 6.3.0 6.2.4 6.2.2 6.2.1 6.2.0 6.1.5 6.1.2 6.1.1 6.1.0 6.0.2 6.0.0
35 :doc:`DGL <../compatibility/ml-compatibility/dgl-compatibility>` [#dgl_compat]_ N/A N/A N/A 2.4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
36 :doc:`Megablocks <../compatibility/ml-compatibility/megablocks-compatibility>` [#megablocks_compat]_ N/A N/A N/A N/A N/A N/A N/A 0.7.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
37 :doc:`Taichi <../compatibility/ml-compatibility/taichi-compatibility>` [#taichi_compat]_ N/A N/A N/A N/A N/A 1.8.0b1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
38 :doc:`Ray <../compatibility/ml-compatibility/ray-compatibility>` [#ray_compat]_ N/A N/A 2.48.0.post0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
39 :doc:`llama.cpp <../compatibility/ml-compatibility/llama-cpp-compatibility>` [#llama-cpp_compat]_ N/A N/A N/A b5997 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
40 `ONNX Runtime <https://onnxruntime.ai/docs/build/eps.html#amd-migraphx>`_ 1.2 1.2 1.2 1.2 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.17.3 1.14.1 1.14.1
41
42

View File

@@ -246,6 +246,8 @@ Expand for full historical view of:
.. [#dgl_compat] DGL is only supported on ROCm 6.4.0.
.. [#megablocks_compat] Megablocks is only supported on ROCm 6.3.0.
.. [#taichi_compat] Taichi is only supported on ROCm 6.3.2.
.. [#ray_compat] Ray is only supported on ROCm 6.4.1.
.. [#llama-cpp_compat] llama.cpp is only supported on ROCm 6.4.0.
.. [#kfd_support-past-60] As of ROCm 6.4.0, forward and backward compatibility between the AMD Kernel-mode GPU Driver (KMD) and its user space software is provided up to a year apart. For earlier ROCm releases, the compatibility is provided for +/- 2 releases. The tested user space versions on this page were accurate as of the time of initial ROCm release. For the most up-to-date information, see the latest version of this information at `User and kernel-space support matrix <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/user-kernel-space-compat-matrix.html>`_.
.. [#ROCT-rocr-past-60] Starting from ROCm 6.3.0, the ROCT Thunk Interface is included as part of the ROCr runtime package.

View File

@@ -0,0 +1,151 @@
:orphan:
.. meta::
:description: llama.cpp deep learning framework compatibility
:keywords: GPU, GGML, llama.cpp compatibility
.. version-set:: rocm_version latest
********************************************************************************
llama.cpp compatibility
********************************************************************************
`llama.cpp <https://github.com/ggml-org/llama.cpp>`__ is an open-source framework
for Large Language Model (LLM) inference that runs on both central processing units
(CPUs) and graphics processing units (GPUs). It is written in plain C/C++, providing
a simple, dependency-free setup.
The framework supports multiple quantization options, from 1.5-bit to 8-bit integers,
to speed up inference and reduce memory usage. Originally built as a CPU-first library,
llama.cpp is easy to integrate with other programming environments and is widely
adopted across diverse platforms, including consumer devices.
ROCm support for llama.cpp is upstreamed, and you can build the official source code
with ROCm support:
- ROCm support for llama.cpp is hosted in the official `https://github.com/ROCm/llama.cpp
<https://github.com/ROCm/llama.cpp>`_ repository.
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ggml-org/llama.cpp <https://github.com/ggml-org/llama.cpp>`_ upstream repository.
- To install llama.cpp, use the prebuilt :ref:`Docker image <llama-cpp-docker-compat>`,
which includes ROCm, llama.cpp, and all required dependencies.
- See the :doc:`ROCm llama.cpp installation guide <rocm-install-on-linux:install/3rd-party/llama-cpp-install>`
to install and get started.
- See the `Installation guide <https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#hip>`__
in the upstream llama.cpp documentation.
.. note::
llama.cpp is supported on ROCm 6.4.0.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
Use cases and recommendations
================================================================================
llama.cpp can be applied in a variety of scenarios, particularly when you need to meet one or more of the following requirements:
- Plain C/C++ implementation with no external dependencies
- Support for 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory usage
- Custom HIP (Heterogeneous-compute Interface for Portability) kernels for running large language models (LLMs) on AMD GPUs (graphics processing units)
- CPU (central processing unit) + GPU (graphics processing unit) hybrid inference for partially accelerating models larger than the total available VRAM (video random-access memory)
llama.cpp is also used in a range of real-world applications, including:
- Games such as `Lucy's Labyrinth <https://github.com/MorganRO8/Lucys_Labyrinth>`__:
A simple maze game where AI-controlled agents attempt to trick the player.
- Tools such as `Styled Lines <https://marketplace.unity.com/packages/tools/ai-ml-integration/style-text-webgl-ios-stand-alone-llm-llama-cpp-wrapper-292902>`__:
A proprietary, asynchronous inference wrapper for Unity3D game development, including pre-built mobile and web platform wrappers and a model example.
- Various other AI applications use llama.cpp as their inference engine;
for a detailed list, see the `user interfaces (UIs) section <https://github.com/ggml-org/llama.cpp?tab=readme-ov-file#description>`__.
Refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_,
where you can search for llama.cpp examples and best practices to optimize your workloads on AMD GPUs.
.. _llama-cpp-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes `ROCm llama.cpp Docker images <https://hub.docker.com/r/rocm/llama.cpp>`__
with ROCm backends on Docker Hub. The following Docker image tags and associated
inventories were tested on `ROCm 6.4.0 <https://repo.radeon.com/rocm/apt/6.4/>`__.
Click |docker-icon| to view the image on Docker Hub.
.. important::
Tag endings of ``_full``, ``_server``, and ``_light`` serve different purposes for entrypoints as follows:
- Full: This image includes both the main executable file and the tools to convert ``LLaMA`` models into ``ggml`` and convert into 4-bit quantization.
- Server: This image only includes the server executable file.
- Light: This image only includes the main executable file.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Full Docker
- Server Docker
- Light Docker
- llama.cpp
- Ubuntu
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_full/images/sha256-f78f6c81ab2f8e957469415fe2370a1334fe969c381d1fe46050c85effaee9d5"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_server/images/sha256-275ad9e18f292c26a00a2de840c37917e98737a88a3520bdc35fd3fc5c9a6a9b"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- .. raw:: html
<a href="https://hub.docker.com/layers/rocm/llama.cpp/llama.cpp-b5997_rocm6.4.0_ubuntu24.04_light/images/sha256-cc324e6faeedf0e400011f07b49d2dc41a16bae257b2b7befa0f4e2e97231320"><i class="fab fa-docker fa-lg"></i> rocm/llama.cpp</a>
- `b5997 <https://github.com/ROCm/llama.cpp/tree/release/b5997>`__
- 24.04
Key ROCm libraries for llama.cpp
================================================================================
llama.cpp functionality on ROCm is determined by its underlying library
dependencies. These ROCm components affect the capabilities, performance, and
feature set available to developers.
.. list-table::
:header-rows: 1
* - ROCm library
- Version
- Purpose
- Usage
* - `hipBLAS <https://github.com/ROCm/hipBLAS>`__
- :version-ref:`hipBLAS rocm_version`
- Provides GPU-accelerated Basic Linear Algebra Subprograms (BLAS) for
matrix and vector operations.
- Supports operations such as matrix multiplication, matrix-vector
products, and tensor contractions. Utilized in both dense and batched
linear algebra operations.
* - `hipBLASLt <https://github.com/ROCm/hipBLASLt>`__
- :version-ref:`hipBLASLt rocm_version`
- hipBLASLt is an extension of the hipBLAS library, providing additional
features like epilogues fused into the matrix multiplication kernel or
use of integer tensor cores.
- By setting the flag ``ROCBLAS_USE_HIPBLASLT``, you can dispatch hipblasLt
kernels where possible.
* - `rocWMMA <https://github.com/ROCm/rocWMMA>`__
- :version-ref:`rocWMMA rocm_version`
- Accelerates warp-level matrix-multiply and matrix-accumulate to speed up matrix
multiplication (GEMM) and accumulation operations with mixed precision
support.
- Can be used to enhance the flash attention performance on AMD compute, by enabling
the flag during compile time.

View File

@@ -0,0 +1,105 @@
:orphan:
.. meta::
:description: Ray deep learning framework compatibility
:keywords: GPU, Ray compatibility
.. version-set:: rocm_version latest
*******************************************************************************
Ray compatibility
*******************************************************************************
Ray is a unified framework for scaling AI and Python applications from your laptop
to a full cluster, without changing your code. Ray consists of `a core distributed
runtime <https://docs.ray.io/en/latest/ray-core/walkthrough.html>`_ and a set of
`AI libraries <https://docs.ray.io/en/latest/ray-air/getting-started.html>`_ for
simplifying machine learning computations.
Ray is a general-purpose framework that runs many types of workloads efficiently.
Any Python application can be scaled with Ray, without extra infrastructure.
ROCm support for Ray is upstreamed, and you can build the official source code
with ROCm support:
- ROCm support for Ray is hosted in the official `https://github.com/ROCm/ray
<https://github.com/ROCm/ray>`_ repository.
- Due to independent compatibility considerations, this location differs from the
`https://github.com/ray-project/ray <https://github.com/ray-project/ray>`_ upstream repository.
- To install Ray, use the prebuilt :ref:`Docker image <ray-docker-compat>`
which includes ROCm, Ray, and all required dependencies.
- See the :doc:`ROCm Ray installation guide <rocm-install-on-linux:install/3rd-party/ray-install>`
for instructions to get started.
- See the `Installation section <https://docs.ray.io/en/latest/ray-overview/installation.html>`_
in the upstream Ray documentation.
- The Docker image provided is based on the upstream Ray `Daily Release (Nightly) wheels <https://docs.ray.io/en/latest/ray-overview/installation.html#daily-releases-nightlies>`__
corresponding to commit `005c372 <https://github.com/ray-project/ray/commit/005c372262e050d5745f475e22e64305fa07f8b8>`__.
.. note::
Ray is supported on ROCm 6.4.1.
Supported devices
================================================================================
**Officially Supported**: AMD Instinct™ MI300X, MI210
Use cases and recommendations
================================================================================
* The `Reinforcement Learning from Human Feedback on AMD GPUs with verl and ROCm
Integration <https://rocm.blogs.amd.com/artificial-intelligence/verl-large-scale/README.html>`__
blog provides an overview of Volcano Engine Reinforcement Learning (verl)
for large language models (LLMs) and discusses its benefits in large-scale
reinforcement learning from human feedback (RLHF). It uses Ray as part of a
hybrid orchestration engine to schedule and coordinate training and inference
tasks in parallel, enabling optimized resource utilization and potential overlap
between these phases. This dynamic resource allocation strategy significantly
improves overall system efficiency. The blog presents verls performance results,
focusing on throughput and convergence accuracy achieved on AMD Instinct™ MI300X
GPUs. Follow this guide to get started with verl on AMD Instinct GPUs and
accelerate your RLHF training with ROCm-optimized performance.
For more use cases and recommendations, see the AMD GPU tabs in the `Accelerator Support
topic <https://docs.ray.io/en/latest/ray-core/scheduling/accelerators.html#accelerator-support>`_
of the Ray core documentation and refer to the `AMD ROCm blog <https://rocm.blogs.amd.com/>`_,
where you can search for Ray examples and best practices to optimize your workloads on AMD GPUs.
.. _ray-docker-compat:
Docker image compatibility
================================================================================
.. |docker-icon| raw:: html
<i class="fab fa-docker"></i>
AMD validates and publishes ready-made `ROCm Ray Docker images <https://hub.docker.com/r/rocm/ray/tags>`__
with ROCm backends on Docker Hub. The following Docker image tags and
associated inventories represent the latest Ray version from the official Docker Hub and are validated for
`ROCm 6.4.1 <https://repo.radeon.com/rocm/apt/6.4.1/>`_. Click the |docker-icon|
icon to view the image on Docker Hub.
.. list-table::
:header-rows: 1
:class: docker-image-compatibility
* - Docker image
- Ray
- Pytorch
- Ubuntu
- Python
* - .. raw:: html
<a href="https://hub.docker.com/layers/rocm/ray/ray-2.48.0.post0_rocm6.4.1_ubuntu24.04_py3.12_pytorch2.6.0/images/sha256-0d166fe6bdced38338c78eedfb96eff92655fb797da3478a62dd636365133cc0"><i class="fab fa-docker fa-lg"></i> rocm/ray</a>
- `2.48.0.post0 <https://github.com/ROCm/ray/tree/release/2.48.0.post0>`_
- 2.6.0+git684f6f2
- 24.04
- `3.12.10 <https://www.python.org/downloads/release/python-31210/>`_

View File

@@ -108,6 +108,8 @@ article_pages = [
{"file": "compatibility/ml-compatibility/dgl-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/megablocks-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/taichi-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/ray-compatibility", "os": ["linux"]},
{"file": "compatibility/ml-compatibility/llama-cpp-compatibility", "os": ["linux"]},
{"file": "how-to/deep-learning-rocm", "os": ["linux"]},
{"file": "how-to/rocm-for-ai/index", "os": ["linux"]},

View File

@@ -110,6 +110,28 @@ The table below summarizes information about ROCm-enabled deep learning framewor
<a href="https://github.com/ROCm/taichi"><i class="fab fa-github fa-lg"></i></a>
* - `Ray <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/ray-compatibility.html>`__
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/ray-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/ray-install.html#using-a-prebuilt-docker-image-with-ray-pre-installed>`__
- `Wheels package <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/ray-install.html#install-ray-on-bare-metal-or-a-custom-container>`__
- `ROCm Base Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/ray-install.html#build-your-own-docker-image>`__
- .. raw:: html
<a href="https://github.com/ROCm/ray"><i class="fab fa-github fa-lg"></i></a>
* - `llama.cpp <https://rocm.docs.amd.com/en/latest/compatibility/ml-compatibility/llama-cpp-compatibility.html>`__
- .. raw:: html
<a href="https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html"><i class="fas fa-link fa-lg"></i></a>
-
- `Docker image <https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/3rd-party/llama-cpp-install.html#use-a-prebuilt-docker-image-with-llama-cpp-pre-installed>`__
- .. raw:: html
<a href="https://github.com/ROCm/llama.cpp"><i class="fab fa-github fa-lg"></i></a>
Learn how to use your ROCm deep learning environment for training, fine-tuning, inference, and performance optimization
through the following guides.

View File

@@ -32,19 +32,23 @@ subtrees:
- file: compatibility/ml-compatibility/pytorch-compatibility.rst
title: PyTorch compatibility
- file: compatibility/ml-compatibility/tensorflow-compatibility.rst
title: TensorFlow compatibility
title: TensorFlow compatibility
- file: compatibility/ml-compatibility/jax-compatibility.rst
title: JAX compatibility
- file: compatibility/ml-compatibility/verl-compatibility.rst
title: verl compatibility
title: verl compatibility
- file: compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst
title: Stanford Megatron-LM compatibility
- file: compatibility/ml-compatibility/dgl-compatibility.rst
title: DGL compatibility
title: DGL compatibility
- file: compatibility/ml-compatibility/megablocks-compatibility.rst
title: Megablocks compatibility
- file: compatibility/ml-compatibility/taichi-compatibility.rst
title: Taichi compatibility
title: Taichi compatibility
- file: compatibility/ml-compatibility/ray-compatibility.rst
title: Ray compatibility
- file: compatibility/ml-compatibility/llama-cpp-compatibility.rst
title: llama.cpp compatibility
- file: how-to/build-rocm.rst
title: Build ROCm from source