[AMD Public Use]

AMD ¢l

AMD ROCm™

HIP Programming Guide

Publication# 1.0 Revision: 1217
Issue Date: December 2020

© 2020-21 Advanced Micro Devices, Inc. All Rights Reserved.

[AMD Public Use]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.
(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification™). If you are accessing the
Specification as part of your performance of work for another party, you acknowledge that you have authority to bind
such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise
use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this
Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification. In consideration of Your use or access
of the Specification (in whole or in part), the receipt and sufficiency of which are acknowledged, You agree as
follows:

1.You may review the Specification only (a) as a reference to assist You in planning and designing Your product,
service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set
forth in the Specification and (b) to provide Feedback about the information disclosed in the Specification to AMD.
2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This
Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual property
rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any notices from the
Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your rights under this
Agreement, to anyone else.
3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary
information. Additionally, AMD reserves the right to discontinue or make changes to the Specification and its
products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY
OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING
OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL,
SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF
GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING
NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems
intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other
application in which the failure of AMD’s product could create a situation where personal injury, death, or severe
property or environmental damage may occur.
5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the
Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or
obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You
agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any
product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD any
Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property
claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual
property incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to
or otherwise provided to any third party.
6. You shall adhere to all applicable U.S. import/export laws and regulations, as well as the import/export control laws
and regulations of other countries as applicable. You further agree to not export, re-export, or transfer, directly or
indirectly, any product, technical data, software or source code received from AMD under this license, or the direct
product of such technical data or software to any country for which the United States or any other applicable
government requires an export license or other governmental approval without first obtaining such licenses or
approvals; or in violation of any applicable laws or regulations of the United States or the country where the technical
data or software was obtained. You acknowledge the technical data and software received will not, in the absence of
authorization from U.S. or local law and regulations as applicable, be used by or exported, re-exported or transferred
to: (i) any sanctioned or embargoed country, or to nationals or residents of such countries; (ii) any restricted end-user
as identified on any applicable government end-user list; or (iii) any party where the end-use involves nuclear,
chemical/biological weapons, rocket systems, or unmanned air vehicles. For the most current Country Group listings,

[AMD Public Use]
AMDZU

1.0 Rev.1217 December 2020 HIP Programming Guide

or for additional information about the EAR or Your obligations under those regulations, please refer to the U.S.
Bureau of Industry and Security’s website at http://www.bis.doc.gov/.

7. The Software and related documentation are “commercial items”, as that term is defined at 48 C.F.R. §2.101,
consisting of “commercial computer software” and “commercial computer software documentation”, as such terms are
used in 48 C.F.R. §12.212 and 48 C.F.R. §227.7202, respectively. Consistent with 48 C.F.R. §12.212 or 48 C.F.R.
§227.7202-1 through 227.7202-4, as applicable, the commercial computer software and commercial computer
software documentation are being licensed to U.S. Government end users (a) only as commercial items and (b) with
only those rights as are granted to all other end users pursuant to the terms and conditions set forth in this Agreement.
Unpublished rights are reserved under the copyright laws of the United States.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.
Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,
California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of this
agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the
remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take action
against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement
of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You
and AMD concerning the Specification; it may be changed only by a written document signed by both You and an
authorized representative of AMD.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. In addition, any stated support is
planned and is also subject to change. While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no
liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any

intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth
in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

* AMD®, the AMD Arrow logo, AMD Instinct™, Radeon™, ROCm® and combinations

* thereof are trademarks of Advanced Micro Devices, Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
* PCle® is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

http://www.bis.doc.gov/

[AMD Public Use]

[This page left blank intentionally]

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Table of Contents
TaADIE OF CONTENTS ...ttt ettt e st e et et e sbeesbe e st e sreene s 5
(@4 aF=T o) (= R 101 0o [1Tox £ o] o SRR 10
11 FRALUIES ...ttt e b b e e s bt b e e s b e n b e e e anneas 10
1.2 ACCESSING HIP....ooeeieee ettt st e st et e e enra e neeneesneennens 10
121 e (=TT I I To o 1 T SO UPR 11
1.3 HIP Portability and Compiler Technologyccceveiieiieiiiiese e 11
Chapter 2 INSTAIIING HIP oo 12
2.1 Installing Pre-built PACKAGESccvviiiiiee e 12
2.2 PIEIBOUISITES ... ettt ettt ettt et e s e b e et e bt e st e e teareesbeenbenneenns 12
2.3 AMD PIAITOIM ..o bbb 12
24 NVIDIA PIAEFOIM ..ttt ne e 13
2.5 Default paths and environment variables...........c.cccovivieiieiecie e 13
2.6 BUIlAING HIP frOM SOUICEc.viiiiiiieiee et 13
2.6.1 BUITA ROCCIT ...ttt 13
2.6.2 BUIIA HIP oot et re e ae e reere e 13
2.6.3 Default paths and environment variables...........ccccccevveiiiii i 14
2.7 Verifying HIP INStAHAtIONccooiiiiiiiicce s 14
Chapter 3 Programming With HIP ... 15
3.1 HIP TermMiNOIOQYcveeiiiiiiiieii ettt sneene s 15
3.2 Getting Started With HIP APooiie e 16
3.2.1 HIP APT OVEIVIBW ...ttt ettt a et ae e sba e s e e ree s 16
3.2.2 HIP APT EXAMPIES ...cvieiiiie ettt nae et e sneenne e e 16
3.3 Introduction to Memory AHOCATIONccoiiiiieee e 17
3.3.1 HOSE IMIBIMOTY ..t e e e s e e e nnne e 17
3.3.2 Memory alloCation Flagscoveiiiiiiie e 17
3.3.3 (Of0] g LcT =] o Toy VA O] 1] 1 (0] -SSP 17
3.34 Visibility of Zero-Copy HOSt MEMOIYcccviiiiiiiiiieseeeeee s 18
3.4 HIP Kernel LANQUAGEccveiieeieiieiieeie ettt e e ae s e e e e enaenne 20
34.1 Function-Type QUANTIEIS........coviiiiieieee e 20
3.4.2 Variable-Type QUANTIErSccviiiee e 22

Table of Contents 5

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020
3.4.3 BUIHE-IN VariabIeS ..o 23
344 VW BCEOT TYPES ettt ensb e e e nr e e be e e 24
3.4.5 MemOory-Fence INSIUCTIONSccvviieieee e 25
3.4.6 SyNchronization FUNCLIONSccoiiiiiiiieie e 25
3.4.7 ML FUNCLIONS ..ottt et 25
34.8 Device-Side Dynamic Global Memory Allocation...........ccooceeeieinin e, 48
3.4.9 _1aUNCh_DOUNAS oo 49
3.4.10 ReQISIEr KBYWOIG......cciiiieieiiieiee ettt nbe e sreas 51
3411 Pragma UnroOllc.oooeoieiicecee ettt nnes 51
3412 IN-LiNe ASSEMDBIY ..o 51
R R T O 100 T ¢ A TSP U R PP PO PPRRPPRRPPN 52
3.4.14 Kernel ComMPIAtIONcciiiiiiiiiee e sneas 52
3.4.15 gfX-arch-specifiC-KErNelc.ooveiiie e 52

3.5 L 1L oo To [o PSPPSR 52
3.5.1 HIP LOQQING LEVEL......oovieeeceee et 53
3.5.2 HIP LOGQING MASKeiiiiiiiiiieiieee ettt st 53
3.5.3 HIP Logging COMMANGooiieiiiieiice ettt ne e 54
354 HIP Logging EXamMPIe.........ooiiiiiiiiee e e 54
3.55 [L o T To Lo N T oL PSS 56

Chapter4 Transiting from CUDA t0 HIPcoiiiiie e 57

4.1 Transition TOOL HIPIFY ..o 57
41.1 SAMPIE AN PIaCLICE ...t et 57

4.2 HIP POMING PrOCESSvieuiiiiieitieiesieesie ettt e e e e ae e e e sae e e te e e s e e naesneesreenaeaneenneens 58
421 POrting @ NEW CUDA PrOJECEoviiieieeie ettt 58
4.2.2 Distinguishing Compiler MOUESccceveiiieieeiesiese e 60
4.2.3 Compiler Defines: SUMMAIYcouiiiiiiiieiie et 61

4.3 ldentifying ArchiteCture FEALUIES.........ceiveiieieriere et 62
43.1 HIP_ARCH DEFINES ..ottt st 62
4.3.2 Device-ArchiteCture PrOPertiescviveieiieere e see e se e sie e 62
4.3.3 Table of ArchiteCture PrOPEItIESccoieeiieiiiiie et 63
434 FINAING HIP .ot 64
4.3.5 Identifying HIP RUNTIMEcuoiiiiiie e 64

6 Table of Contents

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
4.3.6 NIPLAUNCRKEINEL.o e 64
4.3.7 (000 0] o] | [T @ @] 011 0] 4R URSP ORI 65
4.3.8 LINKING ISSUES ...ttt ettt ettt e s e ste e sneenneenee e 66
4.4 Linking Code with Other COMPIIEISooiiiiiieiieee e 66
44.1 [IDCH+ AN TIDSTACHF ..o s 66
4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)ccccooiiiiiiii 67
443 Using a Standard C++ COMPIIEr........ccoveiiiieiieeccceee e 67
4.4.4 Choosing HIP File EXIENSIONScoiiiiiiiieiieeiie et 68
A5 WOTKAIOUNGS ... couiiiieiietiite sttt bbbt bbbttt b bbbt enes 69
45.1 MEMCPY TOSYMDON......eiiiiiiiei e e 69
452 CU_POINTER_ATTRIBUTE_MEMORY _TYPE.....ccoiiiiireerieeeceneee e 70
453 threadfenCe _SYSTEIMo 70
454 Textures and Cache CONLIol...........coo it 70
4.6 Vo] = I T TSRO PSPPSR 71
4.6.1 [L o T o T[T USSR 71
4.6.2 DEeDUGGING NIPCC ..t 71
4.6.3 Editor Highlightingcovee e 71
4.7 HIP POItING DIIVEE AP ...ttt 71
4.7.1 POrting CUDA DIIVEE APL.....ocoiiiee ettt 71
4.7.2 CUMOUUIE AP ..ottt ettt sr et ne e nbeene s 72
4.7.3 CUCTEX APttt ettt sttt ne et st 72
4.7.4 HIP Module and CtX APIS ... 73
4.7.5 0] 0103 07 Y o PSS 73
4.7.6 hipify translation of CUDA DIIVEr APL........ccco oo 73
4.8 HIP-Clang Implementation NOTESccceiveririieiieie e 74
48.1 P _TAEDIN e 74
4.8.2 Initialization and Termination FUNCLIONS..........cccooiiiiiiininisieee e 74
4.8.3 Kernel LauNCRING........coiiiiie e e 74
4.8.4 AAUIESS SPACESvveveeeeeeieeiteeieeee e et e et e s e e ste e e s e e teaseeaseesteeseesreesteenseaseesseenaeaneenres 75
4.8.5 Using hipModuleLaunchKernel...........ccoooiiiiieie e 75
4.8.6 Additional INFOrMALIONcoviiiiei e 75
4.9 NVCC IMpPlementation NOTES........cvoiiiiiiieie et ae s 76

Table of Contents 7

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

4.9.1 Interoperation between HIP and CUDA DIIVETc.ccoiiiiiineienineseseeeeee e 76
4.9.2 ComPilation OPLIONScoviiiiiieieee et ee s 76
4.9.3 HIP Module and Texture DrivVer APl ..o, 78
Chapter5 AppendiX A —HIP API ... s 80
5.1 HIP APTGUILE ..ottt 80
5.2 SUPPOIEd CUDA APIS ..ottt nte e nne e 80
5.3 Deprecated HIP APIScciiieiiee ettt e e e e naeaneenne e 80
531 HIP Context Management APIS.........oo s 80
5.3.2 HIP Memory Management APIS.........oo i 81
5.4 Supported HIP Math APIScooiiieie et 81
Chapter 6 Appendix B — Supported Clang Options...........ccccvvvereereiienesie e 82
6.1 Supported Clang OPLIONScoveiiiiiiiieiieie sttt nae e 82
Chapter 7 APPENAIX C .ottt et e e e e teesaesneenaeeneenneas 103

7.1 HIP FAQ oottt e et e e et e e e sab e e e s aa e e e na e e e naeeenre e 103

8 Table of Contents

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide

[This page is intentionally left blank]

Table of Contents 9

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

Chapter 1 Introduction

HIP is a C++ Runtime API and Kernel Language that allows developers to create portable
applications for AMD and NVIDIA GPUs from a single source code.

1.1 Features

The key features include:

e HIP is very thin and has little or no performance impact over coding directly in CUDA
mode.

e HIP allows coding in a single-source C++ programming language including features such
as templates, C++ 11 lambdas, classes, namespaces, and more.

e HIP allows developers to use the "best" development environment and tools on each target
platform.

e The HIPIFY tools automatically convert source from CUDA to HIP.

e Developers can specialize in the platform (CUDA or AMD) to tune for performance or
handle tricky cases.

New projects can be developed directly in the portable HIP C++ language and can run on either
NVIDIA or AMD platforms. Additionally, HIP provides porting tools, which make it easy to port
existing CUDA codes to the HIP layer, with no loss of performance as compared to the original
CUDA application.

Thus, the HIP source code can be compiled to run on either platform. Platform-specific features
can be isolated to a specific platform using conditional compilation.

NoTE: HIP is not intended to be a drop-in replacement for CUDA, and developers should expect
to do some manual coding and performance tuning work to complete the port.

1.2 Accessing HIP

HIP is open source in GitHub and the repository maintains several branches.
The HIP repository maintains several branches. The important branches are:
e Release branch: This is the stable branch. All stable releases are listed with release tags.
e Main branch: This is the branch, with new features still under development. While this may
be of interest to many, it should be noted that this branch and the features under

development might not be stable.

For more information, refer to https://github.com/ROCm-Developer-Tools/HIP

10 Introduction Chapter 1

https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md
https://github.com/ROCm-Developer-Tools/HIP

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

1.2.1 Release Tagging
HIP releases are typically naming convention for each ROCM release to help differentiate them.

e rocm X.yy: These are the stable releases based on the development branch.

1.3 HIP Portability and Compiler Technology

HIP C++ code can be compiled with either AMD or NVIDIA GPUs. On the AMD ROCm
platform, HIP provides a header and runtime library built on top of the HIP-Clang compiler. The
HIP runtime implements HIP streams, events, and memory APIs, and is an object library that is
linked with the application.

On the NVIDIA CUDA platform, HIP provides a header file, which translates from the HIP
runtime APIs to CUDA runtime APIs. The header file contains mostly inline functions and, thus,
has a very low overhead developers coding in HIP should expect the same performance as coding
in native CUDA. The code is then compiled with nvcc, the standard C++ compiler provided with
the CUDA SDK. Developers can use any tools supported by the CUDA SDK including the CUDA
profiler and debugger.

Thus, HIP provides source portability to either platform. HIP provides the hipcc compiler driver
which will call the appropriate toolchain depending on the desired platform. The source code for
all headers and the library implementation is available on GitHub.

Chapter 1 Introduction 11

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

Chapter 2 Installing HIP

2.1 Installing Pre-built Packages

HIP can be easily installed using pre-built binary packages using the package manager for your
platform.

2.2 Prerequisites

HIP code can be developed either on AMD ROCm platform using the HIP-Clang compiler, or a
CUDA platform with nvcc installed.

2.3 AMD Platform

For HIP installation instructions, refer to the ROCm Installation Guide at
https.//rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
HIP-Clang is the compiler for compiling HIP programs on the AMD platform.

To build HIP-Clang manually, use the following instructions:

git clone -b rocm-4.0.x https://github.com/RadeonOpenCompute/llvm-project.git
cd llvm-project

mkdir -p build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm/1lvm -DCMAKE_BUILD_TYPE=Release -
DLLVM_ENABLE_ASSERTIONS=1 -DLLVM_TARGETS_TO BUILD="AMDGPU;X86" -
DLLVM_ENABLE_PROJECTS="clang;11ld;compiler-rt" ../1lvm

make -j

sudo make install

To build the ROCm device library,

export PATH=/opt/rocm/1l1lvm/bin:$PATH

git clone -b rocm-4.0.x https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git

cd ROCm-Device-Libs

mkdir -p build && cd build

CC=clang CXX=clang++ cmake -DLLVM_DIR=/opt/rocm/1llvm -DCMAKE_BUILD_TYPE=Release -
DLLVM_ENABLE_WERROR=1 -DLLVM_ENABLE_ASSERTIONS=1 -DCMAKE_INSTALL_PREFIX=/opt/rocm ..
make -j

sudo make install

12 Installing HIP Chapter 2

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

2.4 NVIDIA Platform

HIP-nvcc is the compiler for HIP program compilation on NVIDIA platform.

e Add the ROCm package server to your system as per the OS-specific guide available here.
e Install the "hip—nvcce" package. This will install CUDA SDK and the HIP porting layer.

apt-get install hip-nvcc

2.5 Default paths and environment variables

e By default, HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting
CUDA_PATH env variable).

e By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH
environment variable).

e Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

2.6 Building HIP from Source
261 Build ROCclr

ROCcIr is defined on AMD platform that HIP use Radeon Open Compute Common Language
Runtime (ROCclr), which is a virtual device interface that HIP runtimes interact with different
backends.

For more information, see https://github.com/ROCm-Developer-Tools/ROCclr

git clone -b rocm-4.0.x https://github.com/ROCm-Developer-Tools/ROCclr.git

export ROCclr DIR="$(readlink -f ROCclr)"

git clone -b rocm-4.0.x https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime.git
export OPENCL_DIR="$(readlink -f ROCm-OpenCL-Runtime)"

cd "$ROCclr DIR"

mkdir -p build;cd build

cmake -DOPENCL_DIR="$OPENCL_DIR" -DCMAKE_ INSTALL PREFIX=/opt/rocm/rocclr ..

make -j

sudo make install

2.6.2 Build HIP

git clone -b rocm-4.0.x https://github.com/ROCm-Developer-Tools/HIP.git

export HIP_DIR="$(readlink -f HIP)"

cd "$HIP_DIR"

mkdir -p build; cd build

cmake -DCMAKE_BUILD_TYPE=Release -DHIP_COMPILER=clang -DHIP_PLATFORM=rocclr -
DCMAKE_PREFIX_PATH="$ROCclr_DIR/build;/opt/rocm/" -DCMAKE_INSTALL_PREFIX=</where/to/install/hip>

make -j
sudo make install

Chapter 2 Installing HIP 13

https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories
https://github.com/ROCm-Developer-Tools/ROCclr

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

2.6.3 Default paths and environment variables

e By default, HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_ PATH
environment variable).

e By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH
environment variable).

e By default, HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting
HIP_CLANG_PATH environment variable)

e By default, HIP looks for device library in /opt/rocm/lib (can be overridden by setting
DEVICE_LIB_PATH environment variable).

e Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

e Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation.

After installation, ensure HIP_PATH is pointed to /where/to/install/hip

2.7 Verifying HIP Installation

Run hipconfig (instructions below assume default installation path) :

/opt/rocm/bin/hipconfig --full

Compile and run the square sample.

14 Installing HIP Chapter 2

https://github.com/ROCm-Developer-Tools/HIP/tree/master/samples/0_Intro/square

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

Chapter 3

Programming with HIP

3.1 HIP Terminology

Term Description

host, host cpu

default device

active host thread

Executes the HIP runtime API and is capable of initiating kernel launches to one or more
devices.

Each host thread maintains a "default device™. Most HIP runtime APIs (including
memory allocation, copy commands, kernel launches) do not use accept an explicit
device argument but instead implicitly use the default device. The default device can be
set with hipSetDevice.

Thread running the HIP APlIs.

HIP-Clang Heterogeneous AMDGPU Compiler, with its capability to compile HIP programs on the
AMD platform. https://github.com/RadeonOpenCompute/llvm-project

hipify tools Tools to convert CUDA code to portable C++ code (https://github.com/ROCm-
Developer-Tools/HIPIFY).

ROCclr A virtual device interface that computes runtimes interact with different backends such as
ROCr on Linux or PAL on Windows. The ROCclr is an abstraction layer allowing
runtimes to work on both OSes without much effort.

For more information, see
https://github.com/ROCm-Developer-Tools/ROCclr

hipconfig Tool to report various configuration properties of the target platform.

nvcc nvcc compiler

Chapter 3 Programming with HIP 15

https://github.com/RadeonOpenCompute/llvm-project
https://github.com/ROCm-Developer-Tools/ROCclr

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

3.2 Getting Started with HIP API
3.21 HIP API Overview

The HIP API includes functions such as hipMalloc, hipMemcpy, and hipFree. Programmers
familiar with CUDA will also be able to quickly learn and start coding with the HIP API.
Compute kernels are launched with the “hipLaunchKernel’s macro call.

For more information, refer to Appendix A on HIP APIs.

3.2.2 HIP APl Examples
3221 Example 1

Here is an example showing a snippet of HIP API code:

hipMalloc(&A_d, Nbytes));
hipMalloc(&C_d, Nbytes));
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);
const unsigned blocks = 512;
const unsigned threadsPerBlock = 256;
hipLaunchKernel(vector_square, /* compute kernel*/
dim3(blocks), dim3(threadsPerBlock), ©/*dynamic shared*/, ©/*stream*/, Va
Launch config*/
C_d, A_d, N); /* arguments to the compute kernel */
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

The HIP kernel language defines builtins for determining grid and block coordinates, math
functions, short vectors, atomics, and timer functions. It also specifies additional defines and
keywords for function types, address spaces, and optimization controls. For a detailed description,
see

https://rocmdocs.amd.com/en/latest/Programming_Guides/Kernel _language.html#kernel-
language

3.2.2.2 Example 2
Here’s an example of defining a simple “vector_square’ kernel.
template <typename T>

__global__ void
vector_square(T *C _d, const T *A d, size t N)

{
size t offset = (hipBlockIdx_x * hipBlockDim x + hipThreadIdx_ x);
size t stride = hipBlockDim_x * hipGridDim_ x;
for (size t i=offset; i<N; i+=stride) {
C d[i] = A d[i] * A d[i];
b
b

16 Programming with HIP Chapter 3

https://rocmdocs.amd.com/en/latest/Programming_Guides/Kernel_language.html#kernel-language
https://rocmdocs.amd.com/en/latest/Programming_Guides/Kernel_language.html#kernel-language

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

The HIP Runtime API code and compute kernel definition can exist in the same source file - HIP
takes care of generating host and device code appropriately.

3.3 Introduction to Memory Allocation

3.3.1 Host Memory

hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs
in the system. There are two use cases for this host memory:

e Faster HostToDevice and DeviceToHost Data Transfers: The runtime tracks the
hipHostMalloc allocations and can avoid some of the setup required for regular unpinned
memory. For exact measurements on a specific system, experiment with ——unpinned and -
—-pinned switches for the hipBusBandwidth tool.

o Zero—Copy GPU Access: GPU can directly access the host memory over the CPU/GPU
interconnect, without need to copy the data. This avoids the need for the copy, but during
the kernel access each memory access must traverse the interconnect, which can be tens
of times slower than accessing the GPU's local device memory. Zero—copy memory can be
a good choice when the memory accesses are infrequent (perhaps only once). Zero—-copy
memory is typically "Coherent" and thus not cached by the GPU but this can be overridden
if desired and is explained in more detail below.

3.3.2 Memory allocation flags

hipHostMalloc always sets the hipHostMallocPortable and hipHostMallocMapped flags. Both
usage models described above use the same allocation flags, and the difference is in how the
surrounding code uses the host memory. See the hipHostMalloc API for more information.

3.3.3 Coherency Controls

ROCm defines two coherency options for host memory:

e Coherent memory: Supports fine—grain synchronization while the kernel is running. For
example, a kernel can perform atomic operations that are visible to the host CPU or to
other (peer) GPUs. Synchronization instructions include threadfence_system and C++ 11—
style atomic operations. However, coherent memory cannot be cached by the GPU and
thus may have lower performance.

e Non-coherent memory: Can be cached by GPU, but cannot support synchronization while
the kernel is running. Non-coherent memory can be optionally synchronized only at
command (end-of-kernel or copy command) boundaries. This memory is appropriate for
high-performance access when fine—grain synchronization is not required.

Chapter 3 Programming with HIP 17

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

HIP provides the developer with controls to select which type of memory is used via allocation
flags passed to hipHostMalloc and the HIP_HOST_COHERENT environment variable:

e hipHostMallocCoherent=0, hipHostMallocNonCoherent=0: Use HIP_HOST_COHERENT
environment variable:

o If HIP_HOST COHERENT is 1 or undefined, the host memory allocation is
coherent.

o If HIP_HOST_COHERENT is defined and O: the host memory allocation is non—
coherent.

e hipHostMallocCoherent=1, hipHostMallocNonCoherent=0: The host memory allocation will
be coherent. HIP_HOST_COHERENT env variable is ignored.

e hipHostMallocCoherent=0, hipHostMallocNonCoherent=1: The host memory allocation will
be non-coherent. HIP_HOST_COHERENT env variable is ignored.

e hipHostMallocCoherent=1, hipHostMallocNonCoherent=1: lllegal.

3.34 Visibility of Zero-Copy Host Memory

The coherent and non-coherent host memory visibility is described in the table below. Note, the
coherent host memory is automatically visible at synchronization points.

HIP API Synchronization Coherent Host Non-Coherent
Effect Memory Host Memory
Visibility Visibility
hipStreamSynchronize host waits for all system-scope yes yes
commands in the release
specified stream to
complete
hipDeviceSynchronize host waits for all system-scope yes yes
commands in all release

streams on the
specified device to
complete

hipEventSynchronize host waits for the device-scope yes depends - see the
specified event to release description below
complete

hipStreamWaitEvent stream waits for the | none yes no
specified event to
complete

18 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide
3.34.1 hipEventSynchronize

Developers can control the release scope for hipEvents. By default, the GPU performs a device-
scope acquire and release operation with each recorded event. This will make host and device
memory visible to other commands executing on the same device.

A stronger system-level fence can be specified when the event is created with
hipEventCreateWithFlags.

hipEventReleaseToSystem: Perform a system-scope release operation when the event is
recorded. This will make both Coherent and Non-Coherent host memory visible to other agents in
the system but may involve heavyweight operations such as cache flushing. Coherent memory
will typically use lighter-weight in-kernel synchronization mechanisms, such as an atomic
operation, and, thus, do not need to use hipEventReleaseToSystem.

Summary and Recommendations

e Coherent host memory is the default and is the easiest to use since the memory is visible
to the CPU at typical synchronization points. This memory allows in—kernel
synchronization commands such as threadfence_system to work transparently.

e HIP/ROCm also supports the ability to cache host memory in the GPU using the "Non-
Coherent" host memory allocations. This can provide a performance benefit, but care must
be taken to use the correct synchronization.

3.34.2 Device-Side Malloc
HIP-Clang currently does not support device-side malloc and free.
3.34.3 Use of Long Double Type

In HIP-Clang, long double type is 80-bit extended precision format for x86_64, which is not
supported by AMDGPU. HIP-Clang treats long double type as IEEE double type for AMDGPU.
Using long double type in HIP source code will not cause issue as long as data of long double type
is not transferred between host and device. However, long double type should not be used as
kernel argument type.

3.344 FMA and Contractions

By default, HIP-Clang assumes -ffp-contract=fast. For x86_64, FMA is off by default since the
generic x86_64 target does not support FMA by default. To turn on FMA on x86_64, either use -
mfma or -march=native on CPU's supporting FMA.

When contractions are enabled and the CPU has not enabled FMA instructions, the GPU can
produce different numerical results than the CPU for expressions that can be contracted.

Chapter 3 Programming with HIP 19

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

3.4 HIP Kernel Language

HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in
compute kernels, including classes, namespaces, operator overloading, templates and more.
Additionally, it defines other language features designed specifically to target accelerators, such as
the following:

e A kernel-launch syntax that uses standard C+ +, resembles a function call and is portable
to all HIP targets

e Short-vector headers that can serve on a host or a device

e Math functions resembling those in the "math.h" header included with standard C+ +

compilers
e Built-in functions for accessing specific GPU hardware capabilities

This section describes the built-in variables and functions accessible from the HIP kernel. It’s
intended for readers who are familiar with CUDA kernel syntax and want to understand how HIP
is different.

The features are marked with one of the following keywords:
e Supported - HIP supports the feature with a CUDA-equivalent function

e Not supported — HIP does not support the feature
e Under development - the feature is under development but not yet available

34.1 Function-Type Qualifiers
34.1.1 __device__
The supported __device__ functions are:

e Executed on the device
e C(Called from the device only

The __device__ keyword can combine with the host keyword (see host).
3.4.1.2 __global__

The supported __global __ functions are:

e Executed on the device
e Called ("launched") from the host

HIP _ global__ functions must have a void return type. See the Kernel Launch example for more
information.

HIP lacks dynamic-parallelism support, so __global__ functions cannot be called from the device.

20 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev. 1217 December 2020 HIP Programming Guide
3.4.1.3 __host__
The supported __host__ functions are:

e Executed on the host
e (Called from the host

__host__can combine with __device__, in which case the function compiles for both the host and
device. These functions cannot use the HIP grid coordinate functions. For example,
"hipThreadldx_x". A possible workaround is to pass the necessary coordinate info as an argument
to the function. _host__ cannot combine with __global__.

HIP parses the __noinline__and __ forceinline__ keywords and converts them to the appropriate
Clang attributes.

34.1.4 Calling __global__ Functions

__global__ functions are often referred to as kernels, and calling one is termed launching the
kernel. These functions require the caller to specify an "execution configuration" that includes the
grid and block dimensions. The execution configuration can also include other information for the
launch, such as the amount of additional shared memory to allocate and the stream where the
kernel should execute. HIP introduces a standard C++ calling convention to pass the execution
configuration to the kernel in addition to the Cuda <<< >>> syntax.

e In HIP, kernels launch with either the <<< >>> syntax or the "hipLaunchKernel" function.
e The first five parameters to hipLaunchKernel are the following:

o symbol kernelName: the name of the kernel to launch. To support template kernels
which contains "," use the HIP_KERNEL_NAME macro. The hipify tools insert this
automatically.

0 dim3 gridDim: 3D-grid dimensions specifying the number of blocks to launch.

dim3 blockDim: 3D-block dimensions specifying the number of threads in each block.

0 size_t dynamicShared: amount of additional shared memory to allocate when launching
the kernel (see shared)

o0 hipStream_t: stream where the kernel should execute. A value of O corresponds to the
NULL stream (see Synchronization Functions).

e Kernel arguments must follow the five parameters

@]

The hipLaunchKernel macro always starts with the five parameters specified above, followed by
the kernel arguments. HIPIFY tools optionally convert CUDA launch syntax to hipLaunchKernel,
including conversion of optional arguments in <<< >>> to the five required hipLaunchKernel
parameters. The dim3 constructor accepts zero to three arguments and will by default initialize
unspecified dimensions to 1. See dim3. The kernel uses the coordinate built-ins (hipThread*,
hipBlock*, hipGrid*) to determine coordinate index and coordinate bounds of the work item that’s
currently executing. For more information, see Coordinate Built-Ins.

Chapter 3 Programming with HIP 21

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

3.4.15 Kernel-Launch Example

// Example showing device function, _ device _ _ host__
// <- compile for both device and host
float PlusOne(float x)

{
return x + 1.0;
¥
__global
void
MyKernel (const float *a, const float *b, float *c, unsigned N)
{
unsigned gid = hipThreadIdx_x; // <- coordinate index function
if (gid < N) {
c[gid] = a[gid] + PlusOne(b[gid]);
¥
¥
void callMyKernel()
{
float *a, *b, *c; // initialization not shown...
unsigned N = 1000000;
const unsigned blockSize = 256;
MyKernel<<<dim3(gridDim), dim3(groupDim), @, ©>>> (a,b,c,n);
// Alternatively, kernel can be launched by
// hipLaunchKernel(MyKernel, dim3(N/blockSize), dim3(blockSize), @, @, a,b,c,N);
¥

3.4.2 Variable-Type Qualifiers
34.2.1 __constant__

The __constant__ keyword is supported. The host writes constant memory before launching the
kernel; from the GPU, this memory is read-only during kernel execution. The functions for
accessing constant memory (hipGetSymbolAddress(), hipGetSymbolSize(),
hipMemcpyToSymbol(), hipMemcpyToSymbolAsync(), hipMemcpyFromSymbol(),
hipMemcpyFromSymbolAsync()) are available.

3.4.2.2 __shared__
The _shared__ keyword is supported.

extern __shared__ allows the host to dynamically allocate shared memory and is specified as a
launch parameter. HIP uses an alternate syntax based on the HIP_DYNAMIC_SHARED macro.

3.4.2.3 __managed__

Managed memory, including the __managed _ keyword, are not supported in HIP.

22 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020

3.4.2.4 __restrict__

HIP Programming Guide

The _ restrict__ keyword tells the compiler that the associated memory pointer will not alias with
any other pointer in the kernel or function. This feature can help the compiler generate better code.

In most cases, all pointer arguments must use this keyword to realize the benefit.

3.4.3 Built-In VVariables

3.43.1 Coordinate Built-Ins

These built-ins determine the coordinate of the active work item in the execution grid. They are

defined in hip_runtime.h (rather than being implicitly defined by the compiler).

HIP Syntax CUDA Syntax

hipThreadldx_x
hipThreadldx_y
hipThreadldx_z
hipBlockldx_x
hipBlockldx_y
hipBlockldx_z
hipBlockDim_x
hipBlockDim_y
hipBlockDim_z
hipGridDim_x
hipGridDim_y

hipGridDim_z

threadldx.x
threadldx.y
threadldx.z
blockldx.x
blockldx.y
blockldx.z
blockDim.x
blockDim.y
blockDim.z
gridDim.x
gridDim.y

gridDim.z

Chapter 3

Programming with HIP

23

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020
3.4.3.2 warpSize

The warpSize variable is of type int and contains the warp size (in threads) for the target device.
Note that all current Nvidia devices return 32 for this variable, and all current AMD devices return
64. Device code should use the warpSize built-in to develop portable wave-aware code.

3.4.4 Vector Types

Note that these types are defined in hip_runtime.h and are not automatically provided by the
compiler.

3.4.4.1 Short Vector Types

Short vector types derive from the basic integer and floating-point types. They are structures
defined in hip_vector_types.h. The first, second, third, and fourth components of the vector are
accessible through the x, y, z, and w fields, respectively. All the short vector types support a
constructor function of the form make_<type name>(). For example, float4 make_float4(float X,
float y, float z, float w) creates a vector of type float4 and value (x,y,z,w).

HIP supports the following short vector formats:
Signed Integers

charl, char2, char3, char4

shortl, short2, short3, short4

intl, int2, int3, int4

longl, long?2, long3, long4

longlong1, longlong2, longlong3, longlong4

Unsigned Integers

ucharl, uchar?2, uchar3, uchar4

ushortl, ushort2, ushort3, ushort4

uintl, uint2, uint3, uint4

ulongl, ulong?2, ulong3, ulong4

ulonglongl, ulonglong?2, ulonglong3, ulonglong4

Floating Points

e floatl, float2, float3, float4
e doublel, double2, double3, double4

24 Programming with HIP Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

3.4.4.2 dim3

dim3 is a three-dimensional integer vector type commonly used to specify grid and group
dimensions. Unspecified dimensions are initialized to 1.

typedef struct dim3 {
uint32_t x;
uint32_t y;
uint32_t z;
dim3(uint32_t _x=1, uint32_t _y=1, uint32_t _z=1) : x(_x), y(vy), z(_z) {};
s
345 Memory-Fence Instructions
HIP supports __threadfence() and __threadfence_block().

HIP provides a workaround for threadfence_system() under the HIP-Clang path. To enable the
workaround, HIP should be built with environment variable HIP_ COHERENT_HOST_ALLOC
enabled.

Also, the kernels that use __threadfence_system() should be modified as follows:
e The kernel should only operate on finegrained system memory; which should be allocated

with hipHostMalloc().
e Remove all memcpy for those allocated finegrained system memory regions.

3.4.6 Synchronization Functions

The __syncthreads() built-in function is supported in HIP. The __syncthreads_count(int),
__syncthreads_and(int) and __syncthreads_or(int) functions are under development.

3.4.7 Math Functions
HIP-Clang supports a set of math operations callable from the device.
34.7.1 Single Precision Mathematical Functions

Following is the list of supported single-precision mathematical functions.

Function Supported Supported

on Host on Device

float acosf (float x) v v
Calculate the arc cosine of the input argument.
float acoshf (float x) v v

Calculate the nonnegative arc hyperbolic cosine of the input argument.

Chapter 3 Programming with HIP 25

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

float asinf (float x) v v
Calculate the arc sine of the input argument.

float asinhf (float x) v v
Calculate the arc hyperbolic sine of the input argument.

float atan2f (float y, float x) v v
Calculate the arc tangent of the ratio of first and second input arguments.

float atanf (float x) v v
Calculate the arc tangent of the input argument.

float atanhf (float x) v v
Calculate the arc hyperbolic tangent of the input argument.

float cbrtf (float x) v v
Calculate the cube root of the input argument.

float ceilf (float x) v v
Calculate ceiling of the input argument.

float copysignf (float x, floaty) v v
Create value with given magnitude, copying sign of second value.

float cosf (float x) v v
Calculate the cosine of the input argument.

float coshf (float x) v v
Calculate the hyperbolic cosine of the input argument.

float erfcf (float x) v v
Calculate the complementary error function of the input argument.

float erff (float x) v v

Calculate the error function of the input argument.

26 Programming with HIP Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

Function Supported Supported

on Host on Device

float exp10f (float x) v v
Calculate the base 10 exponential of the input argument.

float exp2f (float x) v v
Calculate the base 2 exponential of the input argument.

float expf (float x) v 4
Calculate the base e exponential of the input argument.

float expm1f (float x) v v
Calculate the base e exponential of the input argument, minus 1.

float fabsf (float x) v 4
Calculate the absolute value of its argument.

float fdimf (float x, float y) v v
Compute the positive difference between x and y.

float floorf (float x) v 4
Calculate the largest integer less than or equal to x.

float fmaf (float x, floaty, float z) v v
Compute x x y + z as a single operation.

float fmaxf (float x, floaty) v v
Determine the maximum numeric value of the arguments.

float fminf (float x, floaty) v v
Determine the minimum numeric value of the arguments.

float fmodf (float x, float y) v v
Calculate the floating-point remainder of x / y.

float frexpf (float x, int* nptr) v X

Extract mantissa and exponent of a floating-point value.

Chapter 3 Programming with HIP 27

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

float hypotf (float x, floaty) v v
Calculate the square root of the sum of squares of two arguments.

int ilogbf (float x) v 4
Compute the unbiased integer exponent of the argument.

__RETURN_TYPEL1 isfinite (float a) v v
Determine whether the argument is finite.

__ RETURN_TYPEL1 isinf (floata) v v
Determine whether the argument is infinite.

__ RETURN_TYPEL1 isnan (float a) v v
Determine whether the argument is a NaN.

float Idexpf (float x, int exp) v v
Calculate the value of x - 2exp.

float log10f (float x) v v
Calculate the base 10 logarithm of the input argument.

float log1pf (float x) v v
Calculate the value of loge(1 + x).

float logbf (float x) v v
Calculate the floating-point representation of the exponent of the input argument.

float log2f (float x) v 4
Calculate the base 2 logarithm of the input argument.

float logf (float x) v v
Calculate the natural logarithm of the input argument.

float modff (float x, float* iptr) v X

Break down the input argument into fractional and integral parts.

28 Programming with HIP Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

Function Supported Supported

on Host on Device

float nanf (const char* tagp) X v
Returns "Not a Number" value.

float nearbyintf (float x) v v
Round the input argument to the nearest integer.

float powf (float x, float y) v v
Calculate the value of the first argument to the power of the second argument.

float remainderf (float x, floaty) v v
Compute single-precision floating-point remainder.

float remquof (float X, float y, int* quo) v X
Compute single-precision floating-point remainder and part of quotient.

float roundf (float x) v v
Round to nearest integer value in floating-point.

float scalbnf (float X, intn) v v
Scale floating-point input by an integer power of two.

__ RETURN_TYPEL1 signbit (floata) v v
Return the sign bit of the input.

void sincosf (float x, float* sptr, float* cptr) v X
Calculate the sine and cosine of the first input argument.

float sinf (float x) v v
Calculate the sine of the input argument.

float sinhf (float x) v v
Calculate the hyperbolic sine of the input argument.

float sqrtf (float x) v v

Calculate the square root of the input argument.

Chapter 3 Programming with HIP 29

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

float tanf (float x) v v
Calculate the tangent of the input argument.

float tanhf (float x) v v
Calculate the hyperbolic tangent of the input argument.

float truncf (float x) v v
Truncate input argument to an integral part.

float tgammaf (float x) v v
Calculate the gamma function of the input argument.

float erfcinvf (floaty) v v
Calculate the inverse complementary function of the input argument.

float erfexf (float x) v v
Calculate the scaled complementary error function of the input argument.

float erfinvf (float y) v v
Calculate the inverse error function of the input argument.

float fdividef (float x, float y) v v
Divide two floating-point values.

float frexpf (float x, int *nptr) v v
Extract mantissa and exponent of a floating-point value.

float jOf (float x) v v

Calculate the value of the Bessel function of the first kind of order 0 for the input
argument.

float j1f (float x) v v

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

float jnf (int n, float x) v v
Calculate the value of the Bessel function of the first kind of order n for the input
argument.

30 Programming with HIP Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

Function Supported Supported

on Host on Device

float Igammarf (float x) v v

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

long long int llrintf (float x) v v
Round input to nearest integer value.

long long int llroundf (float x) 4 v
Round to nearest integer value.

long int Irintf (float x) v v
Round input to the nearest integer value.

long int Iroundf (float x) v v
Round to nearest integer value.

float modff (float x, float *iptr) v v
Break down the input argument into fractional and integral parts.

float nextafterf (float x, floaty) 4 v
Returns next representable single-precision floating-point value after an argument.

float norm3df (float a, float b, float ¢) v v

Calculate the square root of the sum of squares of three coordinates of the
argument.

float norm4df (float a, float b, float c, float d) v v

Calculate the square root of the sum of squares of four coordinates of the
argument.

float normcdff (floaty) v v
Calculate the standard normal cumulative distribution function.
float normedfinvf (floaty) v v

Calculate the inverse of the standard normal cumulative distribution function.

Chapter 3 Programming with HIP 31

AMDA

HIP Programming Guide 1.0 Rev. 1217

Function Supported

on Host

December 2020

Supported
on Device

float normf (int dim, const float *a) v
Calculate the square root of the sum of squares of any number of coordinates.

float rchrtf (float x) v
Calculate the reciprocal cube root function.

float remquof (float x, float y, int *quo) v
Compute single-precision floating-point remainder and part of quotient.

float rhypotf (float x, floaty) v
Calculate one over the square root of the sum of squares of two arguments.

float rintf (float x) v
Round input to nearest integer value in floating-point.

float rnorm3df (float a, float b, float c) v

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

float rnorm4df (float a, float b, float c, float d) v

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

float rnormf (int dim, const float *a) v

Calculate the reciprocal of square root of the sum of squares of any number of
coordinates.

float scalbinf (float x, long intn') v
Scale floating-point input by an integer power of two.

void sincosf (float X, float *sptr, float *cptr) v
Calculate the sine and cosine of the first input argument.

void sincospif (float x, float *sptr, float *cptr) v

Calculate the sine and cosine of the first input argument multiplied by PI.

32 Programming with HIP

Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide
Function Supported Supported

on Host on Device

float yOf (float x) v v

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

float y1f (float x) v v

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

float ynf (int n, float x) v v

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

3.4.7.2 Double Precision Mathematical Functions

The following table consists of supported double-precision mathematical functions.

Function Supported Supported
on Host on Device

double acos (double x) v v

Calculate the arc cosine of the input argument.

double acosh (double x) v v

Calculate the nonnegative arc hyperbolic cosine of the input argument.

double asin (double x) v v

Calculate the arc sine of the input argument.

double asinh (double x) v v

Calculate the arc hyperbolic sine of the input argument.

double atan (double x) v v

Calculate the arc tangent of the input argument.

double atan2 (double y, double x) v v

Calculate the arc tangent of the ratio of first and second input arguments.

Chapter 3 Programming with HIP 33

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

double atanh (double x) v v
Calculate the arc hyperbolic tangent of the input argument.

double cbrt (double x) v v
Calculate the cube root of the input argument.

double ceil (double x) v v
Calculate ceiling of the input argument.

double copysign (double x, double y) v v
Create value with given magnitude, copying sign of second value.

double cos (double x) v v
Calculate the cosine of the input argument.

double cosh (double x) v v
Calculate the hyperbolic cosine of the input argument.

double erf (double x) v v
Calculate the error function of the input argument.

double erfc (double x) v v
Calculate the complementary error function of the input argument.

double exp (double x) v v
Calculate the base e exponential of the input argument.

double exp10 (double x) v v
Calculate the base 10 exponential of the input argument.

double exp2 (double x) v v
Calculate the base 2 exponential of the input argument.

double expm1 (double x) v v

Calculate the base e exponential of the input argument, minus 1.

34 Programming with HIP Chapter 3

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Function Supported Supported

on Host on Device

double fabs (double x) v v
Calculate the absolute value of the input argument.

double fdim (double x, double y) v v
Compute the positive difference between x and y.

double floor (double x) v v
Calculate the largest integer less than or equal to x.

double fma (double x, double y, double z) v v
Compute x x y + z as a single operation.

double fmax (double , double) v v
Determine the maximum numeric value of the arguments.

double fmin (double x, double y) v v
Determine the minimum numeric value of the arguments.

double fmod (double x, double y) v v
Calculate the floating-point remainder of x / y.

double frexp (double X, int* nptr) v X
Extract mantissa and exponent of a floating-point value.

double hypot (double x, double y) v v
Calculate the square root of the sum of squares of two arguments.

int ilogb (double x) v v
Compute the unbiased integer exponent of the argument.

__RETURN_TYPE1 isfinite (double a) v v
Determine whether an argument is finite.

__RETURN_TYPEL1 isinf (double a) v v

Determine whether an argument is infinite.

Chapter 3 Programming with HIP 35

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

_ RETURN_TYPEL1 isnan (double a) v v
Determine whether an argument is a NaN.

double Idexp (double x, int exp) v v
Calculate the value of x - 2exp.

double log (double x) v v
Calculate the base e logarithm of the input argument.

double log10 (double x) v v
Calculate the base 10 logarithm of the input argument.

double loglp (double x) v v
Calculate the value of loge(1 + x).

double log2 (double x) v v
Calculate the base 2 logarithm of the input argument.

double logb (double x) v v
Calculate the floating-point representation of the exponent of the input argument.

double modf (double x, double* iptr) v X
Break down the input argument into fractional and integral parts.

double nan (const char* tagp) X v
Returns "Not a Number" value.

double nearbyint (double x) v v
Round the input argument to the nearest integer.

double pow (double x, double y) v v
Calculate the value of the first argument to the power of the second argument.

double remainder (double x, double y) v v

Compute double-precision floating-point remainder.

36 Programming with HIP Chapter 3

[AMD Public Use]

AMDA\

1.0 Rev.1217 December 2020 HIP Programming Guide
Function Supported Supported
on Host on Device

double remquo (double x, double y, int* quo) v X
Compute double-precision floating-point remainder and part of quotient.

double round (double x) v 4
Round to nearest integer value in floating-point.

double scalbn (double x, intn) v v
Scale floating-point input by an integer power of two.

__ RETURN_TYPEL1 signbit (double a) v v
Return the sign bit of the input.

double sin (double x) v v
Calculate the sine of the input argument.

void sincos (double x, double* sptr, double* cptr) v X
Calculate the sine and cosine of the first input argument.

double sinh (double x) v v
Calculate the hyperbolic sine of the input argument.

double sqgrt (double x) v v
Calculate the square root of the input argument.

double tan (double x) v v
Calculate the tangent of the input argument.

double tanh (double x) v 4
Calculate the hyperbolic tangent of the input argument.

double tgamma (double x) v v
Calculate the gamma function of the input argument.

double trunc (double x) v 4

Truncate input argument to an integral part.

Chapter 3 Programming with HIP 37

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

double erfcinv (double y) v v
Calculate the inverse complementary function of the input argument.

double erfcx (double x) v v
Calculate the scaled complementary error function of the input argument.

double erfinv (double y) v v
Calculate the inverse error function of the input argument.

double frexp (float x, int *nptr) v v

Extract mantissa and exponent of a floating-point value.

double jO (double x) v v
Calculate the value of the Bessel function of the first kind of order 0 for the input

argument.

double j1 (double x) v v

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

double jn (int n, double x) v v

Calculate the value of the Bessel function of the first kind of order n for the input
argument.

double Igamma (double x) v v

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

long long int llrint (double x) v v
Round input to a nearest integer value.

long long int llround (double x) v v
Round to nearest integer value.

long int Irint (double x) v v

Round input to a nearest integer value.

38 Programming with HIP Chapter 3

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

Function Supported Supported

on Host on Device

long int Iround (double x) v v
Round to nearest integer value.

double modf (double x, double *iptr) v v
Break down the input argument into fractional and integral parts.

double nextafter (double x, double y) v v
Returns next representable single-precision floating-point value after an argument.

double norm3d (double a, double b, double ¢) v v

Calculate the square root of the sum of squares of three coordinates of the
argument.

float norm4d (double a, double b, double ¢, double d) v v

Calculate the square root of the sum of squares of four coordinates of the
argument.

double normcdf (double y) v v
Calculate the standard normal cumulative distribution function.

double normcdfinv (double y) v v
Calculate the inverse of the standard normal cumulative distribution function.

double rcbrt (double x) v v
Calculate the reciprocal cube root function.

double remquo (double x, double y, int *quo) v v
Compute single-precision floating-point remainder and part of quotient.

double rhypot (double x, double y) v v
Calculate one over the square root of the sum of squares of two arguments.

double rint (double x) v v

Round input to the nearest integer value in floating-point.

Chapter 3 Programming with HIP 39

AMDA
HIP Programming Guide 1.0 Rev.1217 December 2020

Function Supported Supported

on Host on Device

double rnorm3d (double a, double b, double c) v v

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

double rnormd4d (double a, double b, double c, double d) v v

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

double rnorm (int dim, const double *a) v v

Calculate the reciprocal of the square root of the sum of squares of any number of
coordinates.

double scalbln (double x, long intn) v v
Scale floating-point input by an integer power of two.

void sincos (double x, double *sptr, double *cptr) v v
Calculate the sine and cosine of the first input argument.

void sincospi (double x, double *sptr, double *cptr) v v
Calculate the sine and cosine of the first input argument multiplied by PI.

double yOf (double x) v v

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

double y1 (double x) v v

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

double yn (int n, double x) v v

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

NoTE: [1] __ RETURN_TYPE is dependent on the compiler. It is usually 'int' for C compilers and
'bool’ for C++ compilers.

40 Programming with HIP Chapter 3

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide
3.4.7.3 Integer Intrinsics

The following table lists supported integer intrinsics. Note, intrinsics are supported on devices
only.

Reverse the bit order of a 32-bit unsigned integer.

unsigned long long int __brevll (unsigned long long int x)

Reverse the bit order of a 64-bit unsigned integer.

int_clz(intx)

Return the number of consecutive high-order zero bits in a 32-bit integer.
unsigned int __clz(unsigned int x)

Return the number of consecutive high-order zero bits in 32-bit unsigned integer.
int __clzll (long long int x)

Count the number of consecutive high-order zero bits in a 64-bit integer.
unsigned int __clzll(long long int x)

Return the number of consecutive high-order zero bits in 64-bit signed integer.
unsigned int __ffs(unsigned int x)

Find the position of least significant bit set to 1 in a 32-bit unsigned integer.1
unsigned int __ffs(int x)

Find the position of least significant bit set to 1 in a 32-bit signed integer.
unsigned int __ffsll(unsigned long long int x)

Find the position of least significant bit set to 1 in a 64-bit unsigned integer.1
unsigned int __ ffsll(long long int x)

Find the position of least significant bit set to 1 in a 64 bit signed integer.
unsigned int __popc (‘unsigned int x)

Count the number of bits that are set to 1 in a 32-bit integer.

Chapter 3 Programming with HIP 41

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

int __popcll (unsigned long long int x)

Count the number of bits that are set to 1 in a 64-bit integer.
int__mul24 (intx, inty)

Multiply two 24-bit integers.

unsigned int __umul24 (unsigned int x, unsigned inty)

Multiply two 24-bit unsigned integers.

NoTE: The HIP-Clang implementation of __ ffs() and __ffsll() contains code to add a constant +1
to produce the ffs result format. For the cases where this overhead is not acceptable and the
programmer is willing to specialize for the platform, HIP-Clang provides
__lastbit_u32_u32(unsigned int input) and __lastbit_u32_u64(unsigned long long int input).

42 Programming with HIP Chapter 3

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide
34.74 Floating-point Intrinsics

The following table provides a list of supported floating-point intrinsics. Note, intrinsics are
supported on devices only.

Function
float _ cosf (float x)

Calculate the fast approximate cosine of the input argument.
float __expf (float x)

Calculate the fast approximate base e exponential of the input argument.
float __ frsqrt_rn (float x)

Compute 1/ Vx in round-to-nearest-even mode.

float _ fsqrt_rd (float x)
Compute Vx in round-down mode.

float _ fsqrt_rn (float x)

Compute Vx in round-to-nearest-even mode.
float _ fsqrt_ru (float x)

Compute \x in round-up mode.
float _ fsqrt_rz (float x)

Compute Vx in round-towards-zero mode.
float __log10f (float x)

Calculate the fast approximate base 10 logarithm of the input argument.
float _ log2f (float x)

Calculate the fast approximate base 2 logarithm of the input argument.

float __ logf (float x)

Calculate the fast approximate base e logarithm of the input argument.
float __powf (float x, float y)

Calculate the fast approximate of xy.

float __ sinf (float x)

Calculate the fast approximate sine of the input argument.

float _ tanf (float x)

Calculate the fast approximate tangent of the input argument.

Chapter 3 Programming with HIP 43

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

Function

double __dsqrt_rd (double x)

Compute \x in round-down mode.

double _ dsqrt_rn (double x)

Compute Vx in round-to-nearest-even mode.
double _ dsqrt_ru (double x)

Compute \x in round-up mode.

double _ dsgrt_rz (double x)

Compute Vx in round-towards-zero mode.

3.4.7.5 Texture Functions
Texture functions are not supported.
3.4.7.6 Surface Functions
Surface functions are not supported.
3.4.7.7 Timer Functions

HIP provides the following built-in functions for reading a high-resolution timer from the device.

clock_t clock()
long long int clock64()

Returns the value of a counter that is incremented every clock cycle on devices. The difference in
values returned provides the cycles used.

3.4.7.8 Atomic Functions

Atomic functions execute as read-modify-write operations residing in global or shared memory.
No other device or thread can observe or modify the memory location during an atomic operation.
If multiple instructions from different devices or threads target the same memory location, the
instructions are serialized in an undefined order.

44 Programming with HIP Chapter 3

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
HIP supports the following atomic operations:
Function Supported in Supported in
HIP CUDA

int atomicAdd(int* address, int val)

unsigned int atomicAdd(unsigned int* address,unsigned int val)

unsigned long long int atomicAdd(unsigned long long int* address, unsigned
long long int val)

float atomicAdd(float* address, float val)

int atomicSub(int* address, int val)

unsigned int atomicSub(unsigned int* address,unsigned int val)

int atomicExch(int* address, int val)

unsigned int atomicExch(unsigned int* address,unsigned int val)

unsigned long long int atomicExch(unsigned long long int* address, unsigned
long long int val)

float atomicExch(float* address, float val)

int atomicMin(int* address, int val)

unsigned int atomicMin(unsigned int* address,unsigned int val)

unsigned long long int atomicMin(unsigned long long int* address, unsigned
long long int val)

int atomicMax(int* address, int val)

unsigned int atomicMax(unsigned int* address,unsigned int val)

unsigned long long int atomicMax(unsigned long long int* address, unsigned
long long int val)

unsigned int atomiclnc(unsigned int* address)

unsigned int atomicDec(unsigned int* address)

int atomicCAS(int* address, int compare, int val)

unsigned int atomicCAS(unsigned int* address,unsigned int
compare,unsigned int val)

unsigned long long int atomicCAS(unsigned long long int* address, unsigned
long long int compare,unsigned long long int val)

int atomicAnd(int* address, int val)

unsigned int atomicAnd(unsigned int* address,unsigned int val)

unsigned long long int atomicAnd(unsigned long long int* address, unsigned
long long int val)

int atomicOr(int* address, int val)

unsigned int atomicOr(unsigned int* address,unsigned int val)

unsigned long long int atomicOr(unsigned long long int* address, unsigned
long long int val)

int atomicXor(int* address, int val)

unsigned int atomicXor(unsigned int* address,unsigned int val)

unsigned long long int atomicXor(unsigned long long int* address, unsigned
long long int val))

SICGPN R S ENPURENE C E UEREG EE S PO PN R S P PGPSR S P PPN PP R SRS
LA N AN A AN A CAANA AR A AR A RRR AR A Ras

Caveats and Features Under-Development

HIP enables atomic operations on 32-bit integers. Additionally, it supports an atomic float add.
AMD hardware, however, implements the float add using a CAS loop, so this function may not
perform efficiently.

Chapter 3 Programming with HIP 45

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

3.4.7.9 Warp Cross-Lane Functions

Warp cross-lane functions operate across all lanes in a warp. The hardware guarantees that all
warp lanes will execute in lockstep, so additional synchronization is unnecessary and the
instructions use no shared memory.

Note that Nvidia and AMD devices have different warp sizes, so portable code should use the
warpSize built-ins to query the warp size. Hipified code from the CUDA path requires careful
review to ensure it doesn’t assume a waveSize of 32. "Wave-aware" code that assumes a waveSize
of 32 will run on a wave-64 machine, but it will utilize only half of the machine resources.

In addition to the warpSize device function, the host code can obtain the warpSize from the device
properties:

int w = props.warpSize;
// implement portable algorithm based on w (rather than assume 32 or 64)

3.4.7.10 Warp Vote and Ballot Functions

int __all(int predicate)
int __any(int predicate)
uinte4_t _ ballot(int predicate)

Threads in a warp are referred to as lanes and are numbered from 0 to warpSize -- 1. For these
functions, each warp lane contributes 1 -- the bit value (the predicate), which is efficiently
broadcast to all lanes in the warp. The 32-bit int predicate from each lane reduces to a 1-bit value:
0 (predicate = 0) or 1 (predicate '=0). __any and __all provide a summary view of the predicates
that the other warp lanes contribute:

e _ any() returns 1 if any warp lane contributes a nonzero predicate, or O otherwise

e _ allQ returns 1 if all other warp lanes contribute nonzero predicates, or O otherwise

Applications can test whether the target platform supports the any/all instruction using the
hasWarpVote device property or the HIP_ARCH_HAS_WARP_VOTE compiler define.

__ballot provides a bit mask containing the 1-bit predicate value from each lane. The nth bit of the
result contains the 1 bit contributed by the nth warp lane. Note that HIP's __ballot function
supports a 64-bit return value (compared with 32 bits). Code ported from CUDA should support
the larger warp sizes that the HIP version of this instruction supports. Applications can test
whether the target platform supports the ballot instruction using the hasWarpBallot device
property or the HIP_ ARCH_HAS_WARP_BALLOT compiler define.

46 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020

34.7.11

Warp Shuffle Functions

HIP Programming Guide

Half-float shuffles are not supported. The default width is warpSize---see Warp Cross-Lane
Functions. Applications should not assume the warpSize is 32 or 64.

int _ shfl
float _ shfl

int _ shfl up
float _ shfl up
int _ shfl down
float _ shfl down
int _ shfl xor
float _ shfl xor
3.4.7.12

(int var,
(float var,
(int var,
(float var,
(int var,
(float var,
(int var,
(float var,

int srclLane,
int srclLane,
unsigned int
unsigned int
unsigned int
unsigned int

int width=warpSize);
int width=warpSize);

delta, int
delta, int
delta, int
delta, int

width=warpSize);
width=warpSize);
width=warpSize);
width=warpSize) ;

int laneMask, int width=warpSize)
int laneMask, int width=warpSize);

Cooperative Groups Functions

Cooperative groups is a mechanism for forming and communicating between groups of threads at
a granularity different than the block. This feature was introduced in CUDA 9. HIP does not

support any of the kernel language cooperative groups types or functions.

Function Supported in HIP Supported in CUDA

void thread_group.sync()
unsigned thread_group.size()
unsigned thread_group.thread_rank()
bool thread_group.is_valid()
thread_group tiled_partition(thread_group, size)
thread_block_tile<N> tiled_partition<N>(thread_group)
thread_block this_thread_block()
T thread_block _tile.shfl()

T thread_block tile.shfl_down()
T thread_block _tile.shfl_up()

T thread_block _tile.shfl_xor()

T thread_block _tile.any()

T thread_block tile.all()

T thread_block _tile.ballot()

T thread_block _tile.match_any/()
T thread_block_tile.match_all()
coalesced_group coalesced_threads()
grid_group this_grid()
void grid_group.sync()
unsigned grid_group.size()

unsigned grid_group.thread_rank()

bool grid_group.is_valid()

multi_grid_group this_multi_grid()

void multi_grid_group.sync()

unsigned multi_grid_group.size()
unsigned multi_grid_group.thread_rank()
bool multi_grid_group.is_valid()

LIPS PN PP PP PP S PP PP S PP S PP S PP P RS PR

Chapter 3

Programming with HIP

47

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020
3.4.7.13 Warp Matrix Functions

Warp matrix functions allow a warp to cooperatively operate on small matrices whose elements
are spread over the lanes in an unspecified manner. This feature was introduced in CUDA 9.

HIP does not support any of the kernel language warp matrix types or functions.

Function Supported in Supported in
HIP CUDA

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned Ida)
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned Ida,
layout t layout)
void store_matrix_sync(T* mptr, fragment<...> &a, unsigned lda, layout_t
layout)
void fill_fragment(fragment<...> &a, const T &value)
void mma_sync(fragment<...> &d, const fragment<...> &a, const
fragment<...> &b, const fragment<...> &c , bool sat)

LA A A A

3.4.7.14 Independent Thread Scheduling

The hardware support for independent thread scheduling introduced in certain architectures
supporting CUDA allows threads to progress independently of each other and enables intra-warp
synchronizations that were previously not allowed.

HIP does not support this type of thread scheduling.

3.4.7.15 Profiler Counter Function

The Cuda __prof_trigger() instruction is not supported.

3.4.7.16 Assert

The assert function is under development. HIP does support an "abort" call which will terminate
the process execution from inside the kernel.

3.4.7.17 Printf
The printf function is supported.
3.4.8 Device-Side Dynamic Global Memory Allocation

Device-side dynamic global memory allocation is under development.

48 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

3.4.9 __launch_bounds__

GPU multiprocessors have a fixed pool of resources (primarily registers and shared memory)
which are shared by the actively running warps. Using more resources can increase IPC of the
kernel but reduces the resources available for other warps and limits the number of warps that can
be simultaneously running. Thus, GPUs have a complex relationship between resource usage and
performance.

__launch_bounds__ allows the application to provide usage hints that influence the resources
(primarily registers) used by the generated code. It is a function attribute that must be attached to
a__global__ function:

__global__ void " -__launch_bounds__ " -(MAX_THREADS_PER_BLOCK, MIN_WARPS_PER_EU) MyKernel(...) ...
MyKernel(...)

launch_bounds supports two parameters:

e MAX_THREADS_PER_BLOCK - The programmers guarantees that the kernel will be
launched with threads less than MAX_THREADS_PER_BLOCK. (On NVCC this maps to
the .maxntid PTX directive). If no launch_bounds is specified,
MAX_THREADS_PER_BLOCK is the maximum block size supported by the device
(typically 1024 or larger). Specifying MAX_THREADS_PER_BLOCK less than the maximum
effectively allows the compiler to use more resources than a default unconstrained
compilation that supports all possible block sizes at launch time. The threads—-per—-block is
the product of (hipBlockDim_x * hipBlockDim_y * hipBlockDim_z).

e MIN_WARPS_PER_EU - directs the compiler to minimize resource usage so that the
requested number of warps can be simultaneously active on a multi-processor. Since
active warps compete for the same fixed pool of resources, the compiler must reduce
resources required by each warp(primarily registers). MIN_WARPS_PER_EU is optional
and defaults to 1 if not specified. Specifying a MIN_WARPS_PER_EU greater than the
default 1 effectively constrains the compiler's resource usage.

3.4.9.1 Compiler Impact
The compiler uses these parameters as follows:

e The compiler uses the hints only to manage register usage and does not
automatically reduce shared memory or other resources.

e Compilation fails if the compiler cannot generate a kernel that meets the
requirements of the specified launch bounds.

e From MAX_THREADS_PER_BLOCK, the compiler derives the maximum number of
warps/block that can be used at launch time. Values of
MAX_THREADS_PER_BLOCK less than the default allows the compiler to use a
larger pool of registers: each warp uses registers, and this hint contains the launch
to a warps/block size that is less than maximum.

Chapter 3 Programming with HIP 49

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

e From MIN_WARPS_PER_EU, the compiler derives a maximum number of registers
that can be used by the kernel (to meet the required #simultaneous active blocks).
If MIN_WARPS_PER_EU is 1, then the kernel can use all registers supported by the
multiprocessor.

e The compiler ensures that the registers used in the kernel is less than both allowed
maximums, typically by spilling registers (to shared or global memory), or by using
more instructions.

e The compiler may use heuristics to increase register usage or may simply be able
to avoid spilling. The MAX_THREADS_PER_BLOCK is particularly useful in this
case, since it allows the compiler to use more registers and avoid situations where
the compiler constrains the register usage (potentially spilling) to meet the
requirements of a large block size that is never used at launch time.

3.49.2 CU and EU Definitions

A compute unit (CU) is responsible for executing the waves of a workgroup. It is composed of one
or more execution units (EU) that are responsible for executing waves. An EU can have enough
resources to maintain the state of more than one executing wave. This allows an EU to hide
latency by switching between waves in a similar way to symmetric multithreading on a CPU. To
allow the state for multiple waves to fit on an EU, the resources used by a single wave have to be
limited. Limiting such resources can allow greater latency hiding but it can result in having to spill
some register state to memory. This attribute allows an advanced developer to tune the number of
waves that are capable of fitting within the resources of an EU. It can be used to ensure at least a
certain number will fit to help hide latency and can also be used to ensure no more than a certain
number will fit to limit cache thrashing.

3.4.9.3 Porting from CUDA __launch_bounds

CUDA defines a __launch_bounds, which is also designed to control occupancy:

__launch_bounds (MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MULTIPROCESSOR)

The second parameter __launch_bounds parameters must be converted to the format used
__hip_launch_bounds, which uses warps and execution-units rather than blocks and multi-
processors (this conversion is performed automatically by hipify tools).

MIN_WARPS_PER_EXECUTION_UNIT = (MIN_BLOCKS_PER_MULTIPROCESSOR * MAX_THREADS_PER BLOCK) / 32

The key differences in the interface are:

e Warps (rather than blocks): The developer is trying to tell the compiler to control resource
utilization to guarantee some amount of active Warps/EU for latency hiding. Specifying
active warps in terms of blocks appears to hide the micro—architectural details of the warp
size, however, makes the interface more confusing since the developer ultimately needs to
compute the number of warps to obtain the desired level of control.

50 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

e [Execution Units (rather than multiProcessor): The use of execution units rather than
multiprocessors provides support for architectures with multiple execution units/multi—
processor. For example, the AMD GCN architecture has 4 execution units per
multiProcessor. The hipDeviceProps has a field executionUnitsPerMultiprocessor.
Platform-specific coding techniques such as #ifdef can be used to specify different
launch_bounds for NVCC and HIP-Clang platforms if desired.

3494 Maxregcount

Unlike nvce, HIP-Clang does not support the "--maxregcount™ option. Instead, users are
encouraged to use the hip_launch_bounds directive since the parameters are more intuitive and
portable than micro-architecture details like registers, and also the directive allows per-kernel
control rather than an entire file. hip_launch_bounds works on both HIP-Clang and nvcc targets.

3.4.10 Register Keyword

The register keyword is deprecated in C++ and is silently ignored by both nvcc and HIP-Clang.
You can pass the option "-Wdeprecated-register” to the compiler warning message.

3.4.11 Pragma Unroll
Unroll with a bound that is known at compile-time is supported. For example:

#pragma unroll 16 /* hint to compiler to unroll next loop by 16 */
for (int i=0; i<16; i++) ...

#pragma unroll 1 /* tell compiler to never unroll the loop */

for (int i=0; i<16; i++) ...

#pragma unroll /* hint to compiler to completely unroll next loop. */
for (int i=0; i<16; i++) ...

3.4.12 In-Line Assembly

GCN ISA In-line assembly is supported. For example:
asm volatile ("v_mac_f32_e32 %0, %2, %3" : "=v" (out[i]) : "@"(out[i]), "v" (a), "v" (in[i]));

The HIP compiler inserts the GCN into the kernel using asm() Assembler statement. volatile
keyword is used so that the optimizers must not change the number of volatile operations or
change their order of execution relative to other volatile operations. v_mac_f32_e32 is the GCN
instruction. For more information, refer to the AMD GCN3 ISA architecture manual Index for the
respective operand in the ordered fashion is provided by % followed by a position in the list of
operands "v" is the constraint code (for target-specific AMDGPU) for 32-bit VGPR register. For
more information, refer to the Supported Constraint Code List for AMDGPU. Output Constraints
are specified by an "=" prefix as shown above ("=v"). This indicates that assembly will write to
this operand, and the operand will then be made available as a return value of the asm expression.
Input constraints do not have a prefix - just the constraint code. The constraint string of "0" says to
use the assigned register for output as an input as well (it being the 0'th constraint).

Chapter 3 Programming with HIP 51

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

3.4.13 C++ Support
The following C++ features are not supported:

e Run-time-type information (RTTI)
e Virtual functions
e Try/catch

3.4.14 Kernel Compilation
hipcc now supports compiling C++/HIP kernels to binary code objects.

The file format for binary is ".co” which means Code Object. The following command builds the
code object using “hipcc’.

“hipcc --genco --offload-arch=[TARGET GPU] [INPUT FILE] -o [OUTPUT FILE]"
[TARGET GPU] = GPU architecture

[INPUT FILE] = Name of the file containing kernels

[OUTPUT FILE] = Name of the generated code object file

NoOTE: When using binary code objects is that the number of arguments to the kernel is different
on HIP-Clang and NVCC path. Refer to the sample in samples/O_Intro/module_api for differences
in the arguments to be passed to the kernel.

3.4.15 gfx-arch-specific-kernel

Clang defined ' __gfx*__ " macros can be used to execute gfx arch specific codes inside the kernel.
Refer to the sample 14 _gpu_arch in samples/2_Cookbook.

3.5 HIP Logging

HIP provides a logging mechanism, which is a convenient way of printing important information
to trace HIP API and runtime codes during the execution of a HIP application. It assists the HIP
development team in the development of HIP runtime and is useful for HIP application developers
as well. Depending on the setting of logging level and logging mask, HIP logging will print
different kinds of information, for different types of functionalities such as HIP APIs, executed
kernels, queue commands, and queue contents, etc.

52 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide
35.1 HIP Logging Level
By default, HIP logging is disabled, it can be enabled via environment setting,
AMD_LOG_LEVEL

The value of the setting controls different logging level.

enum LoglLevel {
LOG_NONE = @,
LOG_ERROR = 1,
LOG_WARNING = 2,
LOG_INFO = 3,
LOG_DEBUG = 4
¥

35.2 HIP Logging Mask

Logging mask is designed to print types of functionalities during the execution of HIP application.
It can be set as one of the following values:

enum LogMask {

LOG_API = 0x00000001, //!< API call

LOG_CMD = 0x00000002, //!< Kernel and Copy Commands and Barriers

LOG_WAIT = 0x00000004, //!< Synchronization and waiting for commands to finish
LOG_AQL = 0x00000008, //!< Decode and display AQL packets

LOG_QUEUE = 0x00000010, //!< Queue commands and queue contents

LOG_SIG = 0x00000020, //!< Signal creation, allocation, pool

LOG_LOCK = 0x00000040, //!< Locks and thread-safety code.

LOG_KERN = 0x00000080, //!< kernel creations and arguments, etc.

LOG_COPY = 0x00000100, //!< Copy debug

LOG_COPY2 = 0x00000200, //!< Detailed copy debug

LOG_RESOURCE = 0x00000400, //!< Resource allocation, performance-impacting events.
LOG_INIT = 0x00000800, //!< Initialization and shutdown

LOG_MISC = 0x00001000, //!< misc debug, not yet classified

LOG_AQL2 = 0x00002000, //!< Show raw bytes of AQL packet

LOG_CODE = 0x00004000, //!< Show code creation debug

LOG_CMD2 = 0x00008000, //!< More detailed command info, including barrier commands
LOG_LOCATION = 0x00010000, //!< Log message location

LOG_ALWAYS = OXFFFFFFFF, //!< Log always even mask flag is zero

s

Once AMD_LOG_LEVEL is set, the logging mask is set as default with the value Ox7FFFFFFF.
However, for different purpose of logging functionalities, logging mask can be defined as well via
an environment variable,

AMD_LOG_MASK

Chapter 3 Programming with HIP 53

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

353 HIP Logging Command
To pring HIP logging information, the function is defined as

#define ClPrint(level, mask, format, ...)
do {
if (AMD_LOG_LEVEL >= level) {
if (AMD_LOG_MASK & mask || mask == amd::LOG_ALWAYS) {
if (AMD_LOG_MASK & amd::LOG_LOCATION) {
amd::log printf(level, _ FILENAME__, _ LINE__, format, ## VA _ARGS_);
} else {
amd::log _printf(level, "", @, format, ## VA ARGS_);
¥
}
¥
} while (false)

In the HIP code, call CIPrint() function with proper input varibles as needed, for example,

ClPrint(amd::LOG_INFO, amd::LOG_INIT, "Initializing HSA stack.");
354 HIP Logging Example

Below is an example to enable HIP logging and get logging information during execution of
hipinfo,

user@user-test:~/hip/bin$ export AMD_LOG_LEVEL=4
user@user-test:~/hip/bin$./hipinfo

:3:rocdevice.cpp 1453 : 23647210092: Initializing HSA stack.
:3:comgrctx.cpp :33 : 23647639336: Loading COMGR library.
:3:rocdevice.cpp 1203 : 23647687108: Numa select cpu
agent[0]=0x13407c0(fine=0x13409a0, coarse=0x1340ad@) for gpu agent=0x1346150
:4:runtime.cpp 182 : 23647698669: init

:3:hip_device_runtime.cpp 1473 : 23647698869: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess

:3:hip_device_runtime.cpp 1502 : 23647698990: 5617 : [7fad295dd840] hipSetDevice (©)
:3:hip_device_runtime.cpp 1507 : 23647699042: 5617 : [7fad295dd840] hipSetDevice: Returned
hipSuccess

device# 0

:3:hip_device.cpp 1150 : 23647699276: 5617 : [7fad295dd840] hipGetDeviceProperties (
ox7ffdbe7db730, 0)

:3:hip_device.cpp 1237 : 23647699335: 5617 : [7fad295dd840] hipGetDeviceProperties:
Returned hipSuccess

Name: Device 7341

pciBusID: 3

pciDevicelID: 0

pciDomainID: 0

multiProcessorCount: 11

maxThreadsPerMultiProcessor: 2560

isMultiGpuBoard: 0

clockRate: 1900 Mhz

memoryClockRate: 875 Mhz

54 Programming with HIP Chapter 3

[AMD Public Use]

AMDA\

1.0 Rev.1217 December 2020 HIP Programming Guide
memoryBusWidth: 0
clockInstructionRate: 1000 Mhz
totalGlobalMem: 7.98 GB
maxSharedMemoryPerMultiProcessor: 64.00 KB
totalConstMem: 8573157376
sharedMemPerBlock: 64.00 KB
canMapHostMemory: 1
regsPerBlock: 0
warpSize: 32
12CacheSize: (%]
computeMode: 0
maxThreadsPerBlock: 1024
maxThreadsDim.x: 1024
maxThreadsDim.y: 1024
maxThreadsDim.z: 1024
maxGridSize.x: 2147483647
maxGridSize.y: 2147483647
maxGridSize.z: 2147483647
major: 10
minor: 12
concurrentKernels: 1
cooperativelaunch: 0
cooperativeMultiDevicelaunch: 0
arch.hasGlobalInt32Atomics: 1
arch.hasGlobalFloatAtomicExch: 1
arch.hasSharedInt32Atomics: 1
arch.hasSharedFloatAtomicExch: 1
arch.hasFloatAtomicAdd: 1
arch.hasGlobalInt64Atomics: 1
arch.hasSharedInt64Atomics: 1
arch.hasDoubles: 1
arch.hasWarpVote: 1
arch.hasWarpBallot: 1
arch.hasWarpShuffle: 1
arch.hasFunnelShift: (%]
arch.hasThreadFenceSystem: 1
arch.hasSyncThreadsExt: 0
arch.hasSurfaceFuncs: (%]
arch.has3dGrid: 1
arch.hasDynamicParallelism: 0
gcnArch: 1012
isIntegrated: 0
maxTexturelD: 65536
maxTexture2D.width: 16384
maxTexture2D.height: 16384
maxTexture3D.width: 2048
maxTexture3D.height: 2048
maxTexture3D.depth: 2048
islLargeBar: 0

:3:hip_device_runtime.cpp 1471 : 23647701557: 5617 : [7fad295dd840] hipGetDeviceCount (
ox7ffdbe7db714)

:3:hip_device_runtime.cpp 1473 : 23647701608: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess

Chapter 3 Programming with HIP 55

AMDA

HIP Programming Guide 1.0 Rev. 1217 December 2020
:3:hip_peer.cpp 176 : 23647701731: 5617 : [7fad295dd840] hipDeviceCanAccessPeer (
ox7ffdbe7db728, 0, 0)

:3:hip_peer.cpp 160 : 23647701784: 5617 : [7fad295dd840] canAccessPeer: Returned
hipSuccess

:3:hip_peer.cpp 177 : 23647701831: 5617 : [7fad295dd840] hipDeviceCanAccessPeer:
Returned hipSuccess

peers:

:3:hip_peer.cpp 176 : 23647701921: 5617 : [7fad295dd840] hipDeviceCanAccessPeer (
ox7ffdbe7db728, 0, 0)

:3:hip_peer.cpp 160 : 23647701965: 5617 : [7fad295dd840] canAccessPeer: Returned
hipSuccess

:3:hip_peer.cpp 177 : 23647701998: 5617 : [7fad295dd840] hipDeviceCanAccessPeer:
Returned hipSuccess

non-peers: devicet#o

:3:hip_memory.cpp 1345 : 23647702191: 5617 : [7fad295dd840] hipMemGetInfo (
ox7ffdbe7db718, ©x7ffdbe7db720)

:3:hip_memory.cpp 1360 : 23647702243: 5617 : [7fad295dd840] hipMemGetInfo: Returned
hipSuccess

memInfo.total: 7.98 GB

memInfo.free: 7.98 GB (100%)

3.5.5 HIP Logging Tips

e HIP logging works for both release and debug version of HIP application.

e Logging function with different logging level can be called in the code as needed.

e Information with a logging level less than AMD_LOG_LEVEL will be printed.

e If need to save the HIP logging output information in a file, just define the file at the
command when running the application at the terminal, for example,

user@user-test:~/hip/bin$./hipinfo > ~/hip_log.txt

56 Programming with HIP Chapter 3

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

Chapter 4 Transiting from CUDA to HIP

4.1 Transition Tool: HIPIFY

4.1.1 Sample and Practice

Here is a simple test, which shows how to use hipify-Perl to port CUDA code to HIP. See a
related blog that explains the example. Now, it is even simpler and requires no manual
modification to the hipified source code - just hipify and compile:

1. Add hip/bin path to the PATH.
$ export PATH=$PATH:[MYHIP]/bin

2. Define the environment variable.

$ export HIP_PATH=[MYHIP]
3. Build an executable file.

$ cd ~/hip/samples/@_Intro/square

$ make

/home/user/hip/bin/hipify-perl square.cu > square.cpp
/home/user/hip/bin/hipcc square.cpp -o square.out
/home/user/hip/bin/hipcc -use-staticlib square.cpp -o square.out.static

4. Execute the file.

$./square.out

info: running on device Vega20 [Radeon Pro W5500]
info: allocate host mem (7.63 MB)

info: allocate device mem (7.63 MB)

info: copy Host2Device

info: launch 'vector_square' kernel

info: copy Device2Host

info: check result

PASSED!

Chapter 4 Transiting from CUDA to HIP 57

http://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

4.2 HIP Porting Process
4.2.1 Porting a New CUDA Project

4211 General Tips

e Starting the port on a CUDA machine is often the easiest approach since you can
incrementally port pieces of the code to HIP while leaving the rest in CUDA. (Recall that
on CUDA machines HIP is just a thin layer over CUDA, so the two code types can
interoperate on nvcc platforms.) Also, the HIP port can be compared with the original
CUDA code for function and performance.

e Once the CUDA code is ported to HIP and is running on the CUDA machine, compile the
HIP code using the HIP compiler on an AMD machine.

e HIP ports can replace CUDA versions: HIP can deliver the same performance as a native
CUDA implementation, with the benefit of portability to both Nvidia and AMD architectures
as well as a path to future C++ standard support. You can handle platform-specific
features through the conditional compilation or by adding them to the open—source HIP
infrastructure.

e Use bin/hipconvertinplace—perl.sh to hipify all code files in the CUDA source directory.

4.2.1.2 Scanning existing CUDA code to scope the porting effort

The hipexamine-perl.sh tool will scan a source directory to determine which files contain CUDA
code and how much of that code can be automatically hipified.

> cd examples/rodinia_3.0/cuda/kmeans
> $HIP_DIR/bin/hipexamine-perl.sh.

info: hipify ./kmeans.h =====>
info: hipify ./unistd.h =====>
info: hipify ./kmeans.c =====>
info: hipify ./kmeans_cuda_kernel.cu =====>

info: converted 40 CUDA->HIP refs(dev:0 mem:® kern:@ builtin:37 math:0 stream:0 event:0 err:0
def:0 tex:3 other:0) warn:0 LOC:185
info: hipify ./getopt.h =====>
info: hipify ./kmeans_cuda.cu =====>

info: converted 49 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:@ math:0 stream:0 event:0 err:0
def:0 tex:12 other:0) warn:0 LOC:311

info: hipify ./rmse.c =====>

info: hipify ./cluster.c =====>

info: hipify ./getopt.c =====>

info: hipify ./kmeans_clustering.c =====>

info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:© stream:0 event:0
err:0 def:0 tex:15 other:0) warn:0 LOC:3607
kernels (1 total) : kmeansPoint(1)

58 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide

hipexamine-perl scans each code file (cpp, ¢, h, hpp, etc.) found in the specified directory:

e Files with no CUDA code (kmeans.h) print a one-line summary just listing the source file
name.

e Files with CUDA code print a summary of what was found - for example, the
kmeans_cuda_kernel.cu file:

info: hipify ./kmeans_cuda_kernel.cu =====>
info: converted 40 CUDA->HIP refs(dev:@ mem:® kern:0 builtin:37 math:0 stream:0 event:0

e Information in kmeans_cuda_kernel.cu :
o How many CUDA calls were converted to HIP (40)
o Breakdown of the CUDA functionality used (dev:0 mem:0 etc). This file uses many
CUDA builtins (37) and texture functions (3).
o Warning for code that looks like CUDA API but was not converted (O in this file).
o Count Lines-of-Code (LOC) - 185 for this file.

e hipexamine—perl also presents a summary at the end of the process for the statistics
collected across all files. This has a similar format to the per-file reporting, and also
includes a list of all kernels which have been called. An example from above:

info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:@ stream:0 event:0
err:0 def:0 tex:15 other:0) warn:0 LOC:3607
kernels (1 total) : kmeansPoint (1)

4.2.1.3 Converting a project in-place
> hipify-perl --inplace

For each input file FILE, this script will: - If FILE.prehip file does not exist, copy the original
code to a new file with extension.prehip. Then hipify the code file. If “FILE.prehip” file exists,
hipify FILE.prehip and save to FILE.

This is useful for testing improvements to the hipify toolset.

The hipconvertinplace-perl.sh script will perform an in-place conversion for all code files in the
specified directory. This can be quite handy when dealing with an existing CUDA code base since
the script preserves the existing directory structure and filenames - and includes work. After
converting in-place, you can review the code to add additional parameters to directory names.

> hipconvertinplace-perl.sh MY_SRC _DIR

Chapter 4 Transiting from CUDA to HIP 59

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

4.2.1.4 Library Equivalents

CUDA ROCm Comment
Library Library
CUBLAS rocBLAS Basic Linear Algebra Subroutines
CUFFT rocFFT Fast Fourier Transfer Library
CUSPARSE rocSPARSE Sparse BLAS + SPMV
cuSolver rocSOLVER Lapack library
AMG-X rocALUTION Sparse iterative solvers and preconditioners with Geometric and Algebraic
MultiGrid
Thrust rocThrust C++ parallel algorithms library
CuUB rocPRIM Low Level Optimized Parallel Primitives
cuDNN MIOpen Deep learning Solver Library
CuRAND rocRAND Random Number Generator Library
EIGEN EIGEN C++ template library for linear algebra: matrices, vectors, numerical solvers,
NCCL RCCL Communications Primitives Library based on the MPI equivalents

4.2.2 Distinguishing Compiler Modes
4221 Identifying HIP Target Platform

All HIP projects target either AMD or NVIDIA platform. The platform affects which headers are
included and which libraries are used for linking.

e HIP_PLATFORM_HCC is defined if the HIP platform targets AMD
e HIP_ PLATFORM_NVCC is defined if the HIP platform targets NVIDIA

4.2.2.2 Identifying the Compiler: HIP-Clang or NVCC

Often, it is useful to know whether the underlying compiler is HIP-Clang or nvcc. This knowledge
can guard platform-specific code or aid in platform-specific performance tuning.

#ifdef _ HIP_PLATFORM HCC__

// Compiled with HIP-Clang

#endif

#ifdef _ NVCC__

// Compiled with nvcc

// Could be compiling with CUDA language extensions enabled (for example, a ".cu file)

// Could be in pass-through mode to an underlying host compile OR (for example, a .cpp file)
#ifdef _ CUDACC__

// Compiled with nvcc (CUDA language extensions enabled)

HIP-Clang directly generates the host code (using the Clang x86 target) without passing the code
to another host compiler. Thus, they have no equivalent of the CUDACC___ define.

60 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

4.2.2.3 Identifying Current Compilation Pass: Host or Device

NVCC makes two passes over the code: one for host code and one for device code. HIP-Clang
will have multiple passes over the code: one for the host code, and one for each architecture on the
device code. _ HIP_DEVICE_COMPILE__ is set to a nonzero value when the compiler (HIP-
Clang or nvcc) is compiling code for a device inside a__global__ kernel or for a device function.
__HIP_DEVICE_COMPILE__ can replace #ifdef checks onthe _ CUDA_ARCH__ define.

// #ifdef _ CUDA_ARCH__
#if _ HIP_DEVICE_COMPILE

Unlike _ CUDA_ARCH__,the HIP_DEVICE_COMPILE__ value is 1 or undefined, and it
does not represent the feature capability of the target device.

4.2.3 Compiler Defines: Summary

Define HIP-Clang nvce Other (GCC, ICC,
Clang, etc.)

HIP-related defines:

__HIP_PLATFORM_HCC __ | Defined Undefined Defined if targeting
AMD platform;
undefined otherwise

_ HIP_PLATFORM_NVCC__ Undefined Defined Defined if targeting
nvcc platform;
undefined otherwise

__HIP_DEVICE_COMPILE__ | 1if compiling for 1 if compiling for device; Undefined
device; undefined if undefined if compiling for
compiling for host host
__HIPCC__ Defined Defined Undefined
__HIP_ARCH_* 0 or 1 depending on 0 or 1 depending on feature 0
feature support (see support (see below)
below)

nvce-related defines:
__ CUDACC__ Defined if source code | Undefined
is compiled by nvcc;
undefined otherwise
__NvCC __ Undefined Defined Undefined
__ CUDA _ARCH__ Undefined Unsigned representing Undefined
compute capability (e.g.,
"130") if in device code; 0 if

in host code
hip-clang-related defines:
~_ HIP__ Defined Undefined Undefined
HIP-Clang common defines:
__clang__ Defined Defined Undefined

Chapter 4 Transiting from CUDA to HIP 61

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

4.3 Identifying Architecture Features
431 HIP_ARCH Defines

Some CUDA code tests CUDA_ARCH__ for a specific value to determine whether the
machine supports a certain architectural feature. For instance,

#if (__CUDA ARCH__ >= 130)
// doubles are supported

This type of code requires special attention since AMD and CUDA devices have different
architectural capabilities. Moreover, you can't determine the presence of a feature using a simple
comparison against an architecture's version number. HIP provides a set of defines and device
properties to query whether a specific architectural feature is supported.

The _ HIP_ARCH_* defines can replace comparisons of _ CUDA_ARCH__ values:

//#if (__CUDA_ARCH__ >= 130) // non-portable
if _ HIP_ARCH_HAS DOUBLES__ { // portable HIP feature query
// doubles are supported
b
For host code, the _ HIP_ARCH__* defines are set to 0. You should only use the HIP_ARCH
fields in the device code.

4.3.2 Device-Architecture Properties

The host code should query the architecture feature flags in the device properties that
hipGetDeviceProperties returns, rather than testing the "major™ and "minor" fields directly:

hipGetDeviceProperties(&deviceProp, device);

//if ((deviceProp.major == 1 && deviceProp.minor < 2)) // non-portable

if (deviceProp.arch.hasSharedInt32Atomics) { // portable HIP feature query
// has shared int32 atomic operations ...

}

62 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

4.3.3 Table of Architecture Properties

The table below shows the full set of architectural properties that HIP supports.

Define (use only in device code) Device Property (run- Comment

32-bit atomics:

__HIP_ARCH_HAS GLOBAL_INT32_ATOMICS _ hasGloballnt32Atomics 32-bit integer
atomics for global
memory

__HIP_ARCH_HAS GLOBAL_FLOAT ATOMIC_EXCH_ hasGlobalFloatAtomicExc | 32-bit float atomic

_ h exchange for
global memory

__HIP_ARCH_HAS SHARED INT32_ATOMICS_ hasSharedInt32Atomics 32-bit integer
atomics for shared
memory

__HIP_ARCH_HAS SHARED_FLOAT_ATOMIC EXCH_ hasSharedFloatAtomicExc | 32-bit float atomic

_ h exchange for
shared memory

__HIP_ARCH_HAS FLOAT_ATOMIC _ADD hasFloatAtomicAdd 32-bit float atomic

add in global and
shared memory
64-bit atomics

__HIP_ARCH_HAS GLOBAL_INT64 ATOMICS _ hasGloballnt64Atomics 64-bit integer
atomics for global
memory

__HIP_ARCH_HAS SHARED_INT64 ATOMICS _ hasSharedInt64Atomics 64-bit integer
atomics for shared
memory

Doubles

__HIP_ARCH_HAS DOUBLES hasDoubles Double-precision

floating point
Warp cross-lane operations:

__HIP_ARCH_HAS WARP_VOTE__ hasWarpVote Warp vote
instructions (any,
all)

__HIP._ ARCH_HAS WARP_BALLOT _ hasWarpBallot Warp ballot
instructions

__HIP_ARCH_HAS WARP_SHUFFLE _ hasWarpShuffle Warp shuffle
operations (shfl_*)

__HIP_ARCH_HAS WARP_FUNNEL_SHIFT hasFunnelShift Funnel shift two
input words into
one

Sync

__HIP_ARCH_HAS THREAD_FENCE_SYSTEM__ hasThreadFenceSystem threadfence_syste
m

__HIP_ARCH_HAS SYNC_THREAD EXT _ hasSyncThreadsExt syncthreads_count,

syncthreads_and,
syncthreads_or
Miscellaneous
__HIP_ARCH_HAS SURFACE_FUNCS hasSurfaceFuncs

Chapter 4 Transiting from CUDA to HIP 63

AMDA

HIP Programming Guide 1.0 Rev. 1217 December 2020
Define (use only in device code) Device Property (run- Comment
time query)
__HIP_ARCH_HAS 3DGRID has3dGrid Grids and groups
are 3D
__HIP_ARCH_HAS DYNAMIC_PARALLEL hasDynamicParallelism

434 Finding HIP

Makefiles can use the following syntax to conditionally provide a default HIP_PATH if one does
not exist:

HIP_PATH ?= $(shell hipconfig --path)

4.3.5 Identifying HIP Runtime
HIP can depend on ROCclr, or NVCC as runtime.

AMD platform HIP_ROCclIr is defined on AMD platform that HIP use Radeon Open Compute
Common Language Runtime, called ROCclr.

ROCclr is a virtual device interface that HIP runtimes interact with different backends, which
allows runtimes to work on Linux and Windows without much effort.

On the Nvidia platform, HIP is just a thin layer on top of CUDA. On a non-AMD platform, HIP
runtime determines if nvcc is available and can be used. If available, HIP_PLATFORM is set to
nvce and underneath CUDA path is used.

4.3.6 hipLaunchKernel

hipLaunchKernel is a variadic macro that accepts as parameters the launch configurations (grid
dims, group dims, stream, dynamic shared size) followed by a variable number of kernel
arguments. This sequence is then expanded into the appropriate kernel launch syntax depending on
the platform. While this can be a convenient single-line kernel launch syntax, the macro
implementation can cause issues when nested inside other macros. For example, consider the
following:

// Will cause compile error:
#tdefine MY_LAUNCH(command, doTrace) \
Q\
if (doTrace) printf ("TRACE: %s\n", #command); \
(command) ; /* The nested () will cause compile error */\

}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, @, Ad), true, "firstCall");

64 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

NoOTE: Avoid nesting macro parameters inside parenthesis - here's an alternative that will work:

#tdefine MY_LAUNCH(command, doTrace) \

Q\
if (doTrace) printf ("TRACE: %s\n", #command); \
command; \

}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, @, Ad), true, "firstCall");
4.3.7 Compiler Options

HIPcc is a portable compiler driver that calls nvcc or HIP-Clang (depending on the target system)
and attach all required include and library options. It passes options through to the target compiler.
Tools that call hipcc must ensure the compiler options are appropriate for the target compiler. The
hipconfig script may help in identifying the target platform, compiler, and runtime. It can also help
set options appropriately.

4371 Compiler Options Supported on AMD Platforms
Option Description
--amdgpu-target=<gpu_arch> [DEPRECATED] This option is replaced by "--offload-arch=<target>".
Generate code for the given GPU target. Supported targets are gfx701, gfx801,
gfx802, gfx803, gfx900, gfx906, gfx908, gfx1010, gfx1011, gfx1012, gfx1030,
gfx1031. This option could appear multiple times on the same command line
to generate a fat binary for multiple targets.

--fgpu-rdc Generate relocatable device code, which allows kernels or device functions
calling device functions in different translation units.

-ggdb Equivalent to "-g" plus tuning for GDB. This is recommended when using
ROCm's GDB to debug GPU code.

--gpu-max-threads-per- Generate code to support up to the specified number of threads per block.
block=<num>

-O<n> Specify the optimization level.

-offload-arch=<target> Specify the AMD GPU [target ID]
https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

-save-temps Save the compiler-generated intermediate files.

-V Show the compilation steps.

Chapter 4 Transiting from CUDA to HIP 65

https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

4.3.7.2 Option for specifying GPU processor
To specify target ID, use
--offload-arch=X

NoTE: For backward compatibility, hipcc also accepts --amdgpu-target=X for specifying target
ID. However, it will be deprecated in future releases.

4.3.8 Linking Issues
4381 Linking with hipcc

hipcc adds the necessary libraries for HIP as well as for the accelerator compiler (nvcc or AMD
compiler). It is recommended to link with hipcc since it automatically links the binary to the
necessary HIP runtime libraries. It also enables linking and managing GPU objects.

-Im Option

NOTE: hipcc adds -Im by default to the link command.

4.4 Linking Code with Other Compilers

CUDA code often uses nvcc for accelerator code (defining and launching kernels, typically
defined in .cu or .cuh files). It also uses a standard compiler (g++) for the rest of the application.
nvcce is a preprocessor that employs a standard host compiler (gcc) to generate the host code. The
code compiled using this tool can employ only the intersection of language features supported by
both nvcc and the host compiler. In some cases, you must take care to ensure the data types and
alignment of the host compiler are identical to those of the device compiler. Only some host
compilers are supported---for example, recent nvcc versions lack Clang host-compiler capability.

HIP-Clang generates both device and host code using the same Clang-based compiler. The code
uses the same API as gcc, which allows code generated by different gcc-compatible compilers to
be linked together. For example, code compiled using HIP-Clang can link with code compiled
using "standard” compilers (such as gcc, ICC, and Clang). Take care to ensure all compilers use
the same standard C++ header and library formats.

44.1 libc++ and libstdc++
hipcc links to libstdc++ by default. This provides better compatibility between g++ and HIP.

If you pass "--stdlib=libc++" to hipcc, hipcc will use the libc++ library. Generally, libc++ provides
a broader set of C++ features while libstdc++ is the standard for more compilers (notably
including g++).

66 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

When cross-linking C++ code, any C++ functions that use types from the C++ standard library
(including std::string, std::vector and other containers) must use the same standard-library
implementation. They include the following:

e Functions or kernels defined in HIP-Clang that are called from a standard compiler
e Functions defined in a standard compiler are called from HIP-Clang.
e Applications with these interfaces should use the default libstdc+ + linking.

Applications that are compiled entirely with hipcc, and which benefit from advanced C++ features
not supported in libstdc++, and which do not require portability to nvcc, may choose to use
libc++.

4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)

The hip_runtime.h and hip_runtime_api.h files define the types, functions and enumerations
needed to compile a HIP program:

e hip_runtime_api.h: defines all the HIP runtime APIs (e.g., hipMalloc) and the types required
to call them. A source file that is only calling HIP APIs but neither defines nor launches
any kernels can include hip_runtime_api.h. hip_runtime_api.h uses no custom hc language
features and can be compiled using a standard C++ compiler.

e hip_runtime.h: included in hip_runtime_api.h. It additionally provides the types and defines
required to create and launch kernels. hip_runtime.h does use custom hc language
features, but they are guarded by ifdef checks. It can be compiled using a standard C+ +
compiler but will expose a subset of the available functions.

CUDA has slightly different content for these two files. In some cases, you may need to convert
hipified code to include the richer hip_runtime.h instead of hip_runtime_api.h.

4.4.3 Using a Standard C++ Compiler

You can compile hip_runtime_api.h using a standard C or C++ compiler (e.g., gcc or ICC). The
HIP include paths and defines (__ HIP_PLATFORM_HCC__ or _ HIP_PLATFORM_NVCC)
must pass to the standard compiler; hipconfig then returns the necessary options:

> hipconfig --cxx_config
-D__ HIP_PLATFORM_HCC__ -I/home/userl/hip/include

You can capture the hipconfig output and passed it to the standard compiler; below is a sample
makefile syntax:

CPPFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cpp_config)

Chapter 4 Transiting from CUDA to HIP 67

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

Nvcc includes some headers by default. However, HIP does not include default headers, and
instead, all required files must be explicitly included. Specifically, files that call HIP run-time
APIs or define HIP kernels must explicitly include the appropriate HIP headers. If the compilation
process reports that it cannot find necessary APIs (for example, "error: identifier ‘hipSetDevice’ is
undefined™), ensure that the file includes hip_runtime.h (or hip_runtime_api.h, if appropriate). The
hipify-perl script automatically converts "cuda_runtime.h" to "hip_runtime.h," and it converts
"cuda_runtime_api.h™ to "hip_runtime_api.h", but it may miss nested headers or macros.

4431 cuda.h

The HIP-Clang path provides an empty cuda.h file. Some existing CUDA programs include this
file but do not require any of the functions.

4.4.4 Choosing HIP File Extensions

Many existing CUDA projects use the ".cu™ and ".cuh™ file extensions to indicate code that should
be run through the nvcc compiler. For quick HIP ports, leaving these file extensions unchanged is
often easier, as it minimizes the work required to change file names in the directory and #include
statements in the files.

For new projects or ports which can be re-factored, we recommend the use of the extension
".hip.cpp" for source files, and ".hip.h" or ".hip.hpp" for header files. This indicates that the code
is standard C++ code, but also provides a unique indication for make tools to run hipcc when
appropriate.

68 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

4.5 Workarounds
45.1 memcpyToSymbol

HIP support for hipMemcpyToSymbol is complete. This feature allows a kernel to define a
device-side data symbol that can be accessed on the host side. The symbol can be in __constant or
device space.

Note that the symbol name needs to be encased in the HIP_SYMBOL macro, as shown in the code
example below. This also applies to hipMemcpyFromSymbol, hipGetSymbolAddress, and
hipGetSymbolSize.

For example:

Device Code:

#include<hip/hip runtime.h>
#include<hip/hip runtime_api.h>

#include<iostream>
t#tdefine HIP_ASSERT(status) \
assert(status == hipSuccess)

#tdefine LEN 512

#tdefine SIZE 2048

__constant__ int Value[LEN];

__global _ void Get(hipLaunchParm 1lp, int *Ad)

{
int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
Ad[tid] Value[tid];

int main()

int *A, *B, *Ad;
A = new int[LEN];
B = new int[LEN];
for(unsigned i=@;i<LEN;i++)
{

Ali] -1*i;

B[i] = ©;

¥
HIP_ASSERT(hipMalloc((void**)&Ad, SIZE));

HIP_ASSERT (hipMemcpyToSymbol (HIP_SYMBOL(Value), A, SIZE, @, hipMemcpyHostToDevice));
hipLaunchKernel(Get, dim3(1,1,1), dim3(LEN,1,1), ©, 0, Ad);
HIP_ASSERT (hipMemcpy (B, Ad, SIZE, hipMemcpyDeviceToHost));
for(unsigned i=@;i<LEN;i++)
{
assert(A[i] == B[i]);
¥

std::cout<<"Passed"<<std::endl;

Chapter 4 Transiting from CUDA to HIP 69

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

45.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE

To get pointer's memory type in HIP/HIP-Clang one should use hipPointerGetAttributes API. The
first parameter of the API is hipPointerAttribute_t which has 'memoryType' as a member variable.
'memoryType' indicates the input pointer is allocated on device or host.

For example:

double * ptr;

hipMalloc(reinterpret cast<void**>(&ptr), sizeof(double));

hipPointerAttribute_t attr;

hipPointerGetAttributes(&attr, ptr); /*attr.memoryType will have value as hipMemoryTypeDevice*/

double* ptrHost;

hipHostMalloc (&ptrHost, sizeof(double));

hipPointerAttribute_t attr;

hipPointerGetAttributes(&attr, ptrHost); /*attr.memoryType will have value as
hipMemoryTypeHost*/

4.5.3 threadfence_system

Threadfence_system makes all device memory writes, all writes to mapped host memory, and all
writes to peer memory visible to CPU and other GPU devices. Some implementations can provide
this behavior by flushing the GPU L2 cache. HIP/HIP-Clang does not provide this functionality.
As a workaround, users can set the environment variable HSA DISABLE_CACHE=1 to disable
the GPU L2 cache. This will affect all accesses and for all kernels and so may have a performance
impact.

454 Textures and Cache Control

Compute programs sometimes use textures either to access dedicated texture caches or to use the
texture-sampling hardware for interpolation and clamping. The former approach uses simple point
samplers with linear interpolation, essentially only reading a single point. The latter approach uses
the sampler hardware to interpolate and combine multiple samples. AMD hardware, as well as
recent competing hardware, has a unified texture/L1 cache, so it no longer has a dedicated texture
cache. But the nvcc path often caches global loads in the L2 cache, and some programs may
benefit from explicit control of the L1 cache contents. We recommend the __Idg instruction for
this purpose.

AMD compilers currently load all data into both the L1 and L2 caches, so __ldg is treated as a no-
op.

We recommend the following for functional portability:

e For programs that use textures only to benefit from improved caching, use the __/dg
instruction
e Programs that use texture object and reference APIs work well on HIP

70 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide

4.6 More Tips
4.6.1 HIP Logging

On an AMD platform, set the AMD_LOG_LEVEL environment variable to log HIP application
execution information.

For more information about HIP Logging refer to section 3.5 in this document.

4.6.2 Debugging hipcc

To see the detailed commands that hipcc issues, set the environment variable HIPCC_VERBOSE
to 1. Doing so will print to stderr the HIP-clang (or nvcc) commands that hipcc generates.

4.6.3 Editor Highlighting

See the utils/vim or utils/gedit directories to add handy highlighting to hip files.

4.7 HIP Porting Driver API

4.7.1 Porting CUDA Driver API

CUDA provides a separate CUDA Driver and Runtime APIs. The two APIs have significant
overlap in functionality:

e Both APIs support events, streams, memory management, memory copy, and error
handling.

e Both APIs deliver similar performance.

e Driver APIs calls begin with the prefix cu while Runtime APIs begin with the prefix cuda.
For example, the Driver API API contains cuEventCreate while the Runtime API contains
cudaEventCreate, with similar functionality.

e The Driver API defines a different but largely overlapping error code space than the
Runtime API uses a different coding convention. For example, Driver API defines
CUDA_ERROR_INVALID_VALUE while the Runtime API defines cudaErrorInvalidValue

NoTE: The Driver API offers two additional pieces of functionality not provided by the Runtime
API: cuModule and cuCtx APIs.

Chapter 4 Transiting from CUDA to HIP 71

AMDZU
HIP Programming Guide 1.0 Rev.1217 December 2020

4.7.2 cuModule API

The Module section of the Driver API provides additional control over how and when accelerator
code objects are loaded. For example, the driver API allows code objects to be loaded from files or
memory pointers. Symbols for kernels or global data can be extracted from the loaded code
objects. In contrast, the Runtime API automatically loads and (if necessary) compiles all of the
kernels from an executable binary when run. In this mode, NVCC must be used to compile kernel
code so the automatic loading can function correctly.

Both Driver and Runtime APIs define a function for launching kernels (called cuLaunchKernel or
cudaLaunchKernel. The kernel arguments and the execution configuration (grid dimensions, group
dimensions, dynamic shared memory, and stream) are passed as arguments to the launch function.
The Runtime additionally provides the <<< >>> syntax for launching kernels, which resembles a
special function call and is easier to use than explicit launch API (in particular the handling of
kernel arguments). However, this syntax is not standard C++ and is available only when NVCC is
used to compile the host code.

The Module features are useful in an environment that generates the code objects directly, such as
a new accelerator language front-end. Here, NVCC is not used. Instead, the environment may have
a different kernel language or a different compilation flow. Other environments have many kernels
and do not want them to be all loaded automatically. The Module functions can be used to load the
generated code objects and launch kernels. As we will see below, HIP defines a Module API
which provides similar explicit control over code object management.

4.7.3 cuCtx API

The Driver API defines "Context™ and "Devices" as separate entities. Contexts contain a single
device, and a device can theoretically have multiple contexts. Each context contains a set of
streams and events specific to the context. Historically contexts also defined a unique address
space for the GPU, though this may no longer be the case in Unified Memory platforms (since the
CPU and all the devices in the same process share a single unified address space). The Context
APIs also provide a mechanism to switch between devices, which allowed a single CPU thread to
send commands to different GPUs. HIP as well as a recent version of CUDA Runtime provide
other mechanisms to accomplish this feat - for example using streams or cudaSetDevice.

The CUDA Runtime API unifies the Context APl with the Device API. This simplifies the APIs
and has little loss of functionality since each Context can contain a single device, and the benefits
of multiple contexts have been replaced with other interfaces. HIP provides a context API to
facilitate easy porting from existing Driver codes. In HIP, the Ctx functions largely provide an
alternate syntax for changing the active device. Most new applications will prefer to use
hipSetDevice or the stream APlIs , therefore HIP has marked hipCtx APIs as deprecated. Support
for these APIs may not be available in future releases. For more details on deprecated APIs, refer
to HIP deprecated APIs at:

https://github.com/ROCm-Developer-
Tools/HIP/blob/master/docs/markdown/hip_deprecated_api_list.md

72 Transiting from CUDA to HIP Chapter 4

https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_deprecated_api_list.md
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_deprecated_api_list.md

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

4.7.4 HIP Module and Ctx APIs

Rather than present two separate APIs, HIP extends the HIP API with new APIs for Modules and
Ctx control.

4.7.4.1 hipModule API

Like the CUDA Driver API, the Module API provides additional control over how code is loaded,
including options to load code from files or in-memory pointers. NVCC and HIP-Clang target
different architectures and use different code object formats: NVCC is “cubin” or "ptx files, while
the HIP-Clang path is the "hsaco™ format. The external compilers which generate these code
objects are responsible for generating and loading the correct code object for each platform.
Notably, there is no fat binary format that can contain code for both NVCC and HIP-Clang
platforms. The following table summarizes the formats used on each platform:

Format APIs NVCC HIP-CLANG
Code Object = hipModuleLoad, hipModuleLoadData = .cubin or PTX text = .hsaco
Fat Binary hipModuleLoadFatBin fatbin .hip_fatbin

“hipcc’ uses HIP-Clang or NVCC to compile host codes. Both may embed code objects into the
final executable, and these code objects will be automatically loaded when the application starts.
The hipModule API can be used to load additional code objects, and in this way provides an
extended capability to the automatically loaded code objects. HIP-Clang allows both capabilities
to be used together if desired. It is possible to create a program with no kernels and thus no
automatic loading.

475 hipCtx API

HIP provides a Ctx API as a thin layer over the existing Device functions. This Ctx API can be
used to set the current context or to query properties of the device associated with the context. The
current context is implicitly used by other APIs such as hipStreamCreate.

4.7.6 hipify translation of CUDA Driver API

The HIPIFY tools convert CUDA Driver APIs for streams, events, modules, devices, memory
management, context, profiler to the equivalent HIP driver calls. For example, cuEventCreate will
be translated into hipEventCreate. HIPIFY tools also convert error codes from the Driver
namespace and coding convention to the equivalent HIP error code. Thus, HIP unifies the APIs for
these common functions. The memory copy API requires additional explanation. The CUDA
driver includes the memory direction in the name of the API (ie cuMemcpyH2D) while the CUDA
driver API provides a single memory copy APl with a parameter that specifies the direction and
additionally supports a "default™ direction where the runtime determines the direction
automatically. HIP provides APIs with both styles: for example, hipMemcpyH2D as well as
hipMemcpy. The first flavor may be faster in some cases since they avoid host overhead to detect
different memory directions.

HIP defines a single error space and uses camel-case for all errors (i.e. hipErrorinvalidValue)

Chapter 4 Transiting from CUDA to HIP 73

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

4.8 HIP-Clang Implementation Notes
4.8.1 hip_fatbin

hip-clang links device code from different translation units together. For each device target, a code
object is generated. Code objects for different device targets are bundled by clang-offload-bundler
as one fatbinary, which is embedded as a global symbol __hip_fatbin in the .hip_fatbin section of
the ELF file of the executable or shared object.

4.8.2 Initialization and Termination Functions

HIP-Clang generates initialization and termination functions for each translation unit for the host
code compilation. The initialization functions call __hipRegisterFatBinary to register the fatbinary
embedded in the ELF file. They also call __hipRegisterFunction and __hipRegisterVar to register
kernel functions and device-side global variables. The termination functions call
__hipUnregisterFatBinary. HIP-Clang emits a global variable __hip_gpubin_handle of void**
type with linkonce linkage and initial value O for each host translation unit. Each initialization
function checks __hip_gpubin_handle and register the fatbinary only if __hip_gpubin_handle is 0
and saves the return value of __hip_gpubin_handle to __hip_gpubin_handle. This is to guarantee
that the fatbinary is only registered once. A similar check is done in the termination functions.

4.8.3 Kernel Launching

HIP-Clang supports kernel launching by CUDA <<<>>> syntax, hipLaunchKernel, and
hipLaunchKernel GGL. The latter two are macros that expand to CUDA <<<>>> syntax.

When the executable or shared library is loaded by the dynamic linker, the initialization functions
are called. In the initialization functions, when __hipRegisterFatBinary is called, the code objects
containing all kernels are loaded; when __hipRegisterFunction is called, the stub functions are
associated with the corresponding kernels in code objects. HIP-Clang implements two sets of
kernels launching APIs.

By default, in the host code, for the <<<>>> statement, hip-clang first emits call of
hipConfigureCall to set up the threads and grids, then emits call of the stub function with the given
arguments. In the stub function, hipSetupArgument is called for each kernel argument, then
hipLaunchByPtr is called with a function pointer to the stub function. In hipLaunchByPtr, the real
kernel associated with the stub function is launched.

If HIP program is compiled with -fhip-new-launch-api, in the host code, for the <<<>>>
statement, hip-clang first emits call of __hipPushCallConfiguration to save the grid dimension,
block dimension, shared memory usage and stream to a stack, then emits call of the stub function
with the given arguments. In the stub function, __hipPopCallConfiguration is called to get the
saved grid dimension, block dimension, shared memory usage and stream, then hipLaunchKernel
is called with a function pointer to the stub function. In hipLaunchKernel, the real kernel
associated with the stub function is launched.

74 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide
4.8.4 Address Spaces

HIP-Clang defines a process-wide address space where the CPU and all devices allocate addresses
from a single unified pool. Thus, addresses may be shared between contexts, and unlike the
original CUDA definition, a new context does not create a new address space for the device.

4.8.5 Using hipModuleLaunchKernel

“hipModuleLaunchKernel™ is "cuLaunchKernel™ in HIP world. It takes the same arguments as
“cuLaunchKernel".

4.8.6 Additional Information

HIP-Clang creates a primary context when the HIP API is called. In a pure driver API code, HIP-
Clang will create a primary context while HIP/NVCC will have an empty context stack.
HIP-Clang will push the primary context to the context stack when it is empty. This can have
subtle differences in applications that mix the runtime and driver APIs.

Chapter 4 Transiting from CUDA to HIP 75

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

4.9 NVCC Implementation Notes

4.9.1 Interoperation between HIP and CUDA Driver

CUDA applications may want to mix CUDA driver code with HIP code. This table shows the type
equivalence to enable this interaction.

HIP Type CU Driver Type CUDA Runtime Type
hipModule_t = CUmodule
hipFunction_t | CUfunction

hipCtx_t CUcontext

hipDevice_t CUdevice

hipStream_t CUstream cudaStream_t
hipEvent t CUevent cudaEvent t
hipArray CUarray cudaArray

4.9.2 Compilation Options

The hipModule_t interface does not support cuModuleLoadDataEx function, which is used to
control PTX compilation options. HIP-Clang does not use PTX and does not support these
compilation options. HIP-Clang code objects always contain fully compiled ISA and do not
require additional compilation as a part of the load step.

The corresponding HIP function "hipModuleLoadDataEx™ behaves as "hipModuleLoadData™ on
HIP-Clang path (compilation options are not used) and as "cuModuleLoadDataEx™ on NVCC path.

For example,

CUDA

CUmodule module;

void *imagePtr = ...; // Somehow populate data pointer with code object
const int numOptions = 1;

CUJit_option options[numOptions];

void * optionValues[numOptions];

options[@] = CU_JIT MAX_REGISTERS;

unsigned maxRegs = 15;

optionValues[@] = (void*)(&maxRegs);

cuModulelLoadDataEx(module, imagePtr, numOptions, options, optionValues);
CUfunction k;
cuModuleGetFunction(&k, module, "myKernel");

76 Transiting from CUDA to HIP Chapter 4

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide

HIP

hipModule_t module;

void *imagePtr = ...; // Somehow populate data pointer with code object

const int numOptions = 1;

hipJitOption options[numOptions];

void * optionValues[numOptions];

options[@] = hipJitOptionMaxRegisters;

unsigned maxRegs = 15;

optionValues[@] = (void*)(&maxRegs);

// hipModulelLoadData(module, imagePtr) will be called on HIP-Clang path, JIT options will not be
used, and

// cupModulelLoadDataEx(module, imagePtr, numOptions, options, optionValues) will be called on
NVCC path

hipModuleLoadDatakx(module, imagePtr, numOptions, options, optionValues);

hipFunction_t k;

hipModuleGetFunction(&k, module, "myKernel");

The sample below shows how to use hipModuleGetFunction:

#include<hip_runtime.h>
#include<hip_runtime_api.h>
#include<iostream>
#include<fstream>
#include<vector>
#define LEN 64
#define SIZE LEN<<2
#ifdef _ HIP_PLATFORM HCC__
#tdefine fileName "vcpy_isa.co"
#endif
#ifdef _ HIP_PLATFORM NVCC__
#tdefine fileName "vcpy_isa.ptx"
#endif
#tdefine kernel _name "hello_world"
int main(){
float *A, *B;
hipDeviceptr_t Ad, Bd;
A = new float[LEN];
B = new float[LEN];
for(uint32_t i=0;i<LEN;i++){
A[i] = i*1l.ef;
B[i] = @.ef;
std::cout<<A[i] << " "<<B[i]«<std::endl;

#ifdef _ HIP_PLATFORM NVCC__
hipInit(9);
hipDevice_t device;
hipCtx_t context;
hipDeviceGet(&device, 0);
hipCtxCreate(&context, 0, device);
#endif

Chapter 4 Transiting from CUDA to HIP 77

AMDA

HIP Programming Guide

hipMalloc((void**)&Ad, SIZE);

hipMalloc((void**)&Bd, SIZE);

hipMemcpyHtoD(Ad, A, SIZE);

hipMemcpyHtoD(Bd, B, SIZE);

hipModule t Module;

hipFunction_t Function;

hipModuleLoad(&odule, fileName);

hipModuleGetFunction(&Function, Module, kernel name);

std: :vector<void*>argBuffer(2);

memcpy (&argBuffer[0], &Ad, sizeof(void*));

memcpy (&argBuffer[1], &Bd, sizeof(void*));

size t size = argBuffer.size()*sizeof(void*);

void *config[] = {
HIP_LAUNCH_PARAM_ BUFFER_POINTER, &argBuffer[e],
HIP LAUNCH PARAM BUFFER_SIZE, &size,
HIP_LAUNCH_PARAM_END

1

1.0 Rev.1217 December 2020

hipModuleLaunchKernel(Function, 1, 1, 1, LEN, 1, 1, @, O, NULL, (void**)&config);

hipMemcpyDtoH(B, Bd, SIZE);
for(uint32_t i=0;i<LEN;i++){
std::cout<<A[i]<<" - "<<B[i]<<std::endl;

#ifdef _ HIP_PLATFORM NVCC__
hipCtxDetach(context);
#tendif

return 0;

}
493 HIP Module and Texture Driver API

HIP supports texture driver APIs however texture reference should be declared in host scope. The
following code explains the use of texture reference for the HIP_ PLATFORM_HCC platform.

// Code to generate code object
#include "hip/hip_runtime.h"
extern texture<float, 2, hipReadModeElementType> tex;
__global__ void tex2dKernel(hipLaunchParm 1lp, float* outputData,
int width,
int height)

{
int x = hipBlockIdx_x*hipBlockDim_x + hipThreadIdx_x;
int y = hipBlockIdx_y*hipBlockDim_y + hipThreadIdx_y;
outputData[y*width + x] = tex2D(tex, X, y);

}

// Host code:
texture<float, 2, hipReadModeElementType> tex;
void myFunc ()
{
7l ooo

textureReference* texref;

78 Transiting from CUDA to HIP

Chapter 4

[AMD Public Use]
AMDZ1

1.0 Rev.1217 December 2020 HIP Programming Guide

hipModuleGetTexRef (&texref, Modulel, "tex");
hipTexRefSetAddressMode(texref, 0, hipAddressModeWrap);
hipTexRefSetAddressMode(texref, 1, hipAddressModeWrap);
hipTexRefSetFilterMode(texref, hipFilterModePoint);
hipTexRefSetFlags(texref, 0);
hipTexRefSetFormat(texref, HIP_AD FORMAT_FLOAT, 1);
hipTexRefSetArray(texref, array, HIP_TRSA_OVERRIDE_FORMAT);
Il coc

Chapter 4 Transiting from CUDA to HIP 79

AMDA

HIP Programming Guide 1.0 Rev.1217 December 2020

Chapter 5 Appendix A- HIP API

The following appendices are available on the AMD ROCm documentation website at:

http://rocmmdocs.amd.com

5.1 HIP APl Guide

You can access the Doxygen-generated HIP APl Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP-AP1_Guide_v4.0.pdf

5.2 Supported CUDA APIs

To access the following supported CUDA APIs, see

https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-fag-
porting-guide-and-programming-guide

Runtime API
Driver API
cuComplex API
cuBLAS
cuRAND
cuDNN

cuFFT
cuSPARSE

5.3 Deprecated HIP APIs
5.3.1 HIP Context Management APIs

CUDA supports cuCtx API, the Driver API that defines "Context" and "Devices" as separate
entities. Contexts contain a single device, and a device can theoretically have multiple contexts.
HIP initially added limited support for APIs to facilitate easy porting from existing driver codes.
The APIs are marked as deprecated now as there is a better alternate interface (such as
hipSetDevice or the stream API) to achieve the required functions.

hipCtxPopCurrent
hipCtxPushCurrent
hipCtxSetCurrent
hipCtxGetCurrent
hipCtxGetDevice
hipCtxGetApiVersion

80 Appendix A — HIP API Chapter 5

http://rocmdocs.amd.com/
https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP-API_Guide_v4.0.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-faq-porting-guide-and-programming-guide
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-faq-porting-guide-and-programming-guide

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020 HIP Programming Guide

hipCtxGetCacheConfig
hipCtxSetCacheConfig
hipCtxSetSharedMemConfig
hipCtxGetSharedMemConfig
hipCtxSynchronize
hipCtxGetFlags
hipCtxEnablePeerAccess
hipCtxDisablePeerAccess

5.3.2 HIP Memory Management APIs
5321 hipMallocHost

Use "hipHostMalloc" instead.

5.3.2.2 hipMemAllocHost

Use "hipHostMalloc" instead.

5.3.2.3 hipHostAlloc

Use "hipHostMalloc" instead.

5.3.2.4 hipFreeHost

Use "hipHostFree" instead.

54 Supported HIP Math APIs

You can access the supported HIP Math APIs at:

https://rocmdocs.amd.com/en/latest/ROCm_API_References/HIP-MATH.html#hip-math

Chapter 5 Appendix A — HIP API 81

https://rocmdocs.amd.com/en/latest/ROCm_API_References/HIP-MATH.html#hip-math

AMDA

HIP Programming Guide

Chapter 6

1.0 Rev.1217 December 2020

Appendix B — Supported Clang
Options

6.1

Supported Clang Options

Clang version: clang version 12.0.0 927e2776dc0e4bb0119efbc5ead05b7425d7f4ac

Option
-Ht
--analyzer-output <value>

--analyze
-arcmt-migrate-emit-errors
-arcmt-migrate-report-
output <value>
-byteswapio

-B <dir>

-CC
-cl-denorms-are-zero
-cl-fast-relaxed-math

-cl-finite-math-only

-cl-fp32-correctly-rounded-
divide-sqrt
-cl-kernel-arg-info
-cl-mad-enable

-cl-no-signed-zeros
-cl-opt-disable

-cl-single-precision-
constant
-cl-std=<value>
-cl-strict-aliasing

-cl-uniform-work-group-
size

-cl-unsafe-math-
optimizations

--config <value>
--cuda-compile-host-device

--cuda-device-only
--cuda-host-only

Support
Supported
Supported
Supported
Unsupported
Unsupported

Supported
Supported

Supported
Supported
Supported
Supported
Supported

Supported
Supported

Supported
Supported
Supported

Supported
Supported

Supported
Supported

Supported
Supported

Supported
Supported

Description

Print (but do not run) the commands to run for this compilation

Static analyzer report output format (html\|plist\|plist-multi-
file\|plist-html\|sarif\|text).

Run the static analyzer

Emit ARC errors even if the migrator can fix them

Output path for the plist report

Swap byte-order for unformatted input/output

Add <dir> to search path for binaries and object files used
implicitly

Include comments from within macros in preprocessed output
OpenCL only. Allow denormals to be flushed to zero.

OpenCL only. Sets -cl-finite-math-only and -cl-unsafe-math-
optimizations, and defines _ FAST RELAXED MATH_ .
OpenCL only. Allow floating-point optimizations that assume
arguments and results are not NaNs or +-Inf.

OpenCL only. Specify that single-precision floating-point divide
and sqgrt used in the program source are correctly rounded.
OpenCL only. Generate kernel argument metadata.

OpenCL only. Allow use of less precise MAD computations in the
generated binary.

OpenCL only. Allow use of less precise no signed zeros
computations in the generated binary.

OpenCL only. This option disables all optimizations. By default
optimizations are enabled.

OpenCL only. Treat double-precision floating-point constant as
single precision constant.

OpenCL language standard to compile for.

OpenCL only. This option is added for compatibility with
OpenCL 1.0.

OpenCL only. Defines that the global work-size be a multiple of
the work-group size specified to clEnqueueNDRangeKernel
OpenCL only. Allow unsafe floating-point optimizations. Also
implies -cl-no-signed-zeros and -cl-mad-enable.

Specifies configuration file

Compile CUDA code for both host and device (default). Has no
effect on non-CUDA compilations.

Compile CUDA code for device only

Compile CUDA code for host only. Has no effect on non-CUDA
compilations.

82

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description
--cuda-include-ptx=<value> | Unsupported | Include PTX for the following GPU architecture (e.g. sm_35) or
‘all'. May be specified more than once.
--cuda-noopt-device-debug | Unsupported = Enable device-side debug info generation. Disables ptxas
optimizations.
--cuda-path-ignore-env Unsupported | Ignore environment variables to detect CUDA installation
--cuda-path=<value> Unsupported = CUDA installation path
-cxx-isystem <directory> Supported Add a directory to the C++ SYSTEM include search path
-C Supported Include comments in preprocessed output
-C Supported Only run preprocess, compile, and assemble steps
-dD Supported Print macro definitions in -E mode in addition to normal output
-dependency-dot <value> Supported Filename to write DOT-formatted header dependencies to
-dependency-file <value> Supported Filename (or -) to write dependency output to
-dI Supported Print include directives in -E mode in addition to normal output
-dM Supported Print macro definitions in -E mode instead of normal output
-dsym-dir <dir> Unsupported | Directory to output dSYM's (if any) to
-D <macro> Supported =<value> Define <macro> to <value> (or 1 if <value> omitted)
-emit-ast Supported Emit Clang AST files for source inputs
-emit-interface-stubs Supported Generate Interface Stub Files.
-emit-llvm Supported Use the LLVM representation for assembler and object files
-emit-merged-ifs Supported Generate Interface Stub Files, emit merged text not binary.
--emit-static-lib Supported Enable linker job to emit a static library.
-enable-trivial-auto-var- Supported Trivial automatic variable initialization to zero is only here for
init-zero-knowing-it-will- benchmarks, it'll eventually be removed, and I'm OK with that
be-removed-from-clang because I'm only using it to benchmark
-E Supported Only run the preprocessor
-FAAPCSBiItfieldLoad Unsupported = Follows the AAPCS standard that all volatile bit-field write
generates at least one load. (ARM only).
-faddrsig Supported Emit an address-significance table
-faligned-allocation Supported Enable C++17 aligned allocation functions
-fallow-editor-placeholders | Supported Treat editor placeholders as valid source code
-fallow-fortran-gnu-ext Supported Allow Fortran GNU extensions
-fansi-escape-codes Supported Use ANSI escape codes for diagnostics
-fapple-kext Unsupported = Use Apple's kernel extensions ABI
-fapple-link-rtlib Unsupported | Force linking the clang builtins runtime library
-fapple-pragma-pack Unsupported = Enable Apple gcc-compatible #pragma pack handling
-fapplication-extension Unsupported | Restrict code to those available for App Extensions
-fbackslash Supported Treat backslash as C-style escape character
-fbasic-block- Supported Place each function's basic blocks in unique sections (ELF Only) :
sections=<value> all'\| labels \| none \| list=<file>
-fblocks Supported Enable the 'blocks' language feature
-fborland-extensions Unsupported | Accept hon-standard constructs supported by the Borland
compiler
-fbuild-session-file=<file> Supported Use the last modification time of <file> as the build session
timestamp
-fbuild-session- Supported Time when the current build session started
timestamp=<time since
Epoch in seconds>
-fbuiltin-module-map Unsupported = Load the clang builtins module map file.
-fcall-saved-x10 Unsupported | Make the x10 register call-saved (AArch64 only)
-fcall-saved-x11 Unsupported = Make the x11 register call-saved (AArch64 only)
-fcall-saved-x12 Unsupported | Make the x12 register call-saved (AArch64 only)
-fcall-saved-x13 Unsupported = Make the x13 register call-saved (AArch64 only)
Chapter 6 Appendix B — Supported Clang Options 83

AMDA

HIP Programming Guide

Option
-fcall-saved-x14
-fcall-saved-x15
-fcall-saved-x18
-fcall-saved-x8
-fcall-saved-x9
-fcf-protection=<value>

-fcf-protection
-fchar8 t

-fclang-abi-
compat=<version>
-fcolor-diagnostics
-fcomment-block-
commands=<arg>
-fcommon
-fcomplete-member-
pointers
-fconvergent-functions
-fcoroutines-ts
-fcoverage-mapping
-fcs-profile-
generate=<directory>

-fcs-profile-generate

-fcuda-approx-
transcendentals
-fcuda-flush-denormals-to-
Zero

-fcuda-short-ptr

-fexx-exceptions
-fdata-sections
-fdebug-compilation-dir
<value>

-fdebug-default-
version=<value>
-fdebug-info-for-profiling
-fdebug-macro
-fdebug-prefix-
map=<value>
-fdebug-ranges-base-
address
-fdebug-types-section
-fdeclspec
-fdelayed-template-parsing

-fdelete-null-pointer-checks
-fdiagnostics-absolute-paths
-fdiagnostics-hotness-
threshold=<number>

Support
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

Unsupported
Supported
Supported

Supported
Supported

Supported
Supported

Supported
Supported

Unsupported
Unsupported

Unsupported

Unsupported
Supported
Unsupported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Unsupported

1.0 Rev.1217 December 2020

Description
Make the x14 register call-saved (AArch64 only)
Make the x15 register call-saved (AArch64 only)
Make the x18 register call-saved (AArch64 only)
Make the x8 register call-saved (AArch64 only)
Make the x9 register call-saved (AArch64 only)
Instrument control-flow architecture protection. Options: return,
branch, full, none.
Enable cf-protection in ‘full' mode
Enable C++ builtin type char8_t
Attempt to match the ABI of Clang <version>

Enable colors in diagnostics

Treat each comma separated argument in <arg> as a
documentation comment block command

Place uninitialized global variables in a common block

Require member pointer base types to be complete if they would
be significant under the Microsoft ABI

Assume functions may be convergent

Enable support for the C++ Coroutines TS

Generate coverage mapping to enable code coverage analysis
Generate instrumented code to collect context sensitive execution
counts into <directory>/default.profraw (overridden by
LLVM_PROFILE_FILE env var)

Generate instrumented code to collect context-sensitive execution
counts into default.profraw (overridden by
LLVM_PROFILE FILE env var)

Use approximate transcendental functions

Flush denormal floating-point values to zero in CUDA device
mode.

Use 32-bit pointers for accessing const/local/shared address
spaces

Enable C++ exceptions

Place each data in its section

The compilation directory to embed in the debug info.

Default DWARF version to use, if a -g option caused DWARF
debug info to be produced

Emit extra debug info to make the sample profile more accurate
Emit macro debug information

remap file source paths in debug info

Use DWARF base address selection entries in .debug_ranges

Place debug types in their section (ELF Only)

Allow _ declspec as a keyword

Parse templated function definitions at the end of the translation
unit

Treat usage of null pointers as undefined behavior (default)
Print absolute paths in diagnostics

Prevent optimization remarks from being output if they do not
have at least this profile count

84

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020

Option
-fdiagnostics-parseable-
fixits
-fdiagnostics-print-source-
range-info
-fdiagnostics-show-hotness
-fdiagnostics-show-note-
include-stack
-fdiagnostics-show-option
-fdiagnostics-show-
template-tree
-fdigraphs

-fdiscard-value-names
-fdollars-in-identifiers
-fdouble-square-bracket-
attributes
-fdwarf-exceptions
-feliminate-unused-debug-
types
-fembed-bitcode-marker
-fembed-bitcode=<option>
-fembed-bitcode
-femit-all-decls
-femulated-tls
-fenable-matrix
-fexceptions
-fexperimental-new-
constant-interpreter
-fexperimental-new-pass-
manager
-fexperimental-relative-
c++-abi-vtables
-fexperimental-strict-
floating-point

-ffast-math
-ffile-prefix-map=<value>

-ffine-grained-bitfield-
accesses
-ffixed-form
-ffixed-point
-ffixed-r19
-ffixed-r9
-ffixed-x10
-ffixed-x11
-ffixed-x12
-ffixed-x13
-ffixed-x14
-ffixed-x15
-ffixed-x16
-ffixed-x17
-ffixed-x18

Support
Supported

Supported

Unsupported
Supported

Supported
Supported

Supported

Supported
Supported
Supported

Unsupported
Supported

Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Supported
Supported

Supported

Supported

Supported

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

HIP Programming Guide

Description
Print fix-its in machine parseable form

Print source range spans in numeric form

Enable profile hotness information in diagnostic line
Display include stacks for diagnostic notes

Print option name with mappable diagnostics

Print a template comparison tree for differing templates

Enable alternative token representations '<:', ':>', '<%', '%>', '%:',

'%:%:" (default)
Discard value names in LLVM IR
Allow '$' in identifiers

Enable '[[]]' attributes in all C and C++ language modes

Use DWARF style exceptions
Do not emit debug info for defined but unused types

Embed placeholder LLVVM IR data as a marker

Embed LLVM bitcode (option: off, all, bitcode, marker)

Embed LLVM IR bitcode as data

Emit all declarations, even if unused

Use emutls functions to access thread local variables
Enable matrix data type and related builtin functions
Enable support for exception handling

Enable the experimental new constant interpreter

Enables an experimental new pass manager in LLVM.

Use the experimental C++ class ABI for classes with virtual tables

Enables experimental strict floating point in LLVM.

Allow aggressive, lossy floating-point optimizations

remap file source paths in debug info and predefined preprocessor

macros

Use separate accesses for consecutive bitfield runs with legal

widths and alignments.

Enable fixed-form format for Fortran

Enable fixed point types

Reserve register r19 (Hexagon only)

Reserve the r9 register (ARM only)

Reserve the x10 register (AArch64/RISC-V only)
Reserve the x11 register (AArch64/RISC-V only)
Reserve the x12 register (AArch64/RISC-V only)
Reserve the x13 register (AArch64/RISC-V only)
Reserve the x14 register (AArch64/RISC-V only)
Reserve the x15 register (AArch64/RISC-V only)
Reserve the x16 register (AArch64/RISC-V only)
Reserve the x17 register (AArch64/RISC-V only)
Reserve the x18 register (AArch64/RISC-V only)

Chapter 6

Appendix B — Supported Clang Options

85

AMDA

HIP Programming Guide

Option
-ffixed-x19
-ffixed-x1
-ffixed-x20
-ffixed-x21
-ffixed-x22
-ffixed-x23
-ffixed-x24
-ffixed-x25
-ffixed-x26
-ffixed-x27
-ffixed-x28
-ffixed-x29
-ffixed-x2
-ffixed-x30
-ffixed-x31
-ffixed-x3
-ffixed-x4
-ffixed-x5
-ffixed-x6
-ffixed-x7
-ffixed-x8
-ffixed-x9
-fforce-dwarf-frame
-fforce-emit-vtables
-fforce-enable-int128
-ffp-contract=<value>

-ffp-exception-
behavior=<value>
-ffp-model=<value>
-ffree-form
-ffreestanding

-ffunc-args-alias
-ffunction-sections
-fglobal-isel
-fgnu-keywords

-fgnu-runtime

-fgnu89-inline
-fgnuc-version=<value>

-fgpu-allow-device-init
-fgpu-rdc

-fhip-new-launch-api
-fignore-exceptions
-fimplicit-module-maps
-finline-functions
-finline-hint-functions

Support
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Supported
Supported
Supported
Supported

Supported

Supported
Supported
Supported

Supported
Supported
Supported
Supported

Unsupported

Unsupported
Supported

Supported
Supported

Supported
Supported
Unsupported
Supported
Supported

1.0 Rev.1217 December 2020

Description
Reserve the x19 register (AArch64/RISC-V only)
Reserve the x1 register (AArch64/RISC-V only)
Reserve the x20 register (AArch64/RISC-V only)
Reserve the x21 register (AArch64/RISC-V only)
Reserve the x22 register (AArch64/RISC-V only)
Reserve the x23 register (AArch64/RISC-V only)
Reserve the x24 register (AArch64/RISC-V only)
Reserve the x25 register (AArch64/RISC-V only)
Reserve the x26 register (AArch64/RISC-V only)
Reserve the x27 register (AArch64/RISC-V only)
Reserve the x28 register (AArch64/RISC-V only)
Reserve the x29 register (AArch64/RISC-V only)
Reserve the x2 register (AArch64/RISC-V only)
Reserve the x30 register (AArch64/RISC-V only)
Reserve the x31 register (AArch64/RISC-V only)
Reserve the x3 register (AArch64/RISC-V only)
Reserve the x4 register (AArch64/RISC-V only)
Reserve the x5 register (AArch64/RISC-V only)
Reserve the x6 register (AArch64/RISC-V only)
Reserve the x7 register (AArch64/RISC-V only)
Reserve the x8 register (AArch64/RISC-V only)
Reserve the x9 register (AArch64/RISC-V only)
Always emit a debug frame section
Emits more virtual tables to improve devirtualization
Enable support for int128 t type
Form fused FP ops (e.g. FMASs): fast (everywhere) \| on
(according to FP_CONTRACT pragma) \| off (never fuse).
Default is 'fast' for CUDA/HIP and ‘on' otherwise.
Specifies the exception behavior of floating-point operations.

Controls the semantics of floating-point calculations.

Enable free-form format for Fortran

Assert that the compilation takes place in a freestanding
environment

Function argument may alias (equivalent to ansi alias)

Place each function in its section

Enables the global instruction selector

Allow GNU-extension keywords regardless of a language
standard

Generate output compatible with the standard GNU Objective-C
runtime

Use the gnu89 inline semantics

Sets various macros to claim compatibility with the given GCC
version (default is 4.2.1)

Allow device-side init function in HIP

Generate relocatable device code, also known as separate
compilation mode

Use new kernel launching API for HIP

Enable support for ignoring exception handling constructs
Implicitly search the file system for module map files.

Inline suitable functions

Inline functions that are (explicitly or implicitly) marked inline

86

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description
-finstrument-function- Unsupported | Instrument function entry only, after inlining, without arguments
entry-bare to the instrumentation call
-finstrument-functions- Unsupported = Like -finstrument-functions, but insert the calls after inlining
after-inlining
-finstrument-functions Unsupported | Generate calls to instrument function entry and exit
-fintegrated-as Supported Enable the integrated assembler
-fintegrated-ccl Supported Run ccl in-process
-fjump-tables Supported Use jump tables for lowering switches
-fkeep-static-consts Supported Keep static const variables if unused
-flax-vector- Supported Enable implicit vector bit-casts
conversions=<value>
-flto-jobs=<value> Unsupported | Controls the backend parallelism of -flto=thin (default of 0 means
the number of threads will be derived from the number of CPUs
detected)
-flto=<value> Unsupported = Set LTO mode to either 'full’ or 'thin’
-flto Unsupported | Enable LTO in 'full' mode
-fmacro-prefix- Supported remap file source paths in predefined preprocessor macros
map=<value>
-fmath-errno Supported Require math functions to indicate errors by setting errno
-fmax-tokens=<value> Supported Max total number of preprocessed tokens for -\Wmax-tokens.
-fmax-type-align=<value> Supported Specify the maximum alignment to enforce on pointers lacking an
explicit alignment
-fmemory-profile Supported Enable heap memory profiling
-fmerge-all-constants Supported Allow merging of constants
-fmessage-length=<value> Supported Format message diagnostics so that they fit within N columns
-fmodule- Unsupported | Specify the mapping of module name to precompiled module file,
file=[<name>=]<file> or load a module file if name is omitted.
-fmodule-map-file=<file> Unsupported Load this module map file
-fmodule-name=<name> Unsupported | Specify the name of the module to build
-fmodules-cache- Unsupported = Specify the module cache path
path=<directory>
-fmodules-decluse Unsupported | Require declaration of modules used within a module
-fmodules-disable- Unsupported = Disable validation of the diagnostic options when loading the
diagnostic-validation module
-fmodules-ignore- Unsupported | Ignore the definition of the given macro when building and
macro=<value> loading modules
-fmodules-prune- Unsupported = Specify the interval (in seconds) after which a module file will be
after=<seconds> considered unused
-fmodules-prune- Unsupported | Specify the interval (in seconds) between attempts to prune the
interval=<seconds> module cache
-fmodules-search-all Unsupported = Search even non-imported modules to resolve references
-fmodules-strict-decluse Unsupported | Like -fmodules-decluse but requires all headers to be in modules
-fmodules-ts Unsupported = Enable support for the C++ Modules TS
-fmodules-user-build-path Unsupported | Specify the module user build path
<directory>
-fmodules-validate-input- Supported Validate PCM input files based on content if mtime differs
files-content
-fmodules-validate-once- Unsupported | Don't verify input files for the modules if the module has been
per-build-session successfully validated or loaded during this build session
-fmodules-validate-system- | Supported Validate the system headers that a module depends on when
headers loading the module
-fmodules Unsupported | Enable the 'modules’ language feature
Chapter 6 Appendix B — Supported Clang Options 87

AMDA

HIP Programming Guide

Option
-fms-compatibility-
version=<value>
-fms-compatibility
-fms-extensions

-fmsc-version=<value>
-fnew-alignment=<align>

-fno-addrsig
-fno-allow-fortran-gnu-ext

—fno—assume-sane—operato r-

new
-fno-autolink

-fno-backslash
-fno-builtin-<value>
-fno-builtin
-fno-c++-static-destructors
-fno-char8 t
-fno-color-diagnostics
-fno-common
-fno-complete-member-
pointers
-fno-constant-cfstrings
-fno-coverage-mapping
-fno-crash-diagnostics

-fno-cuda-approx-
transcendentals
-fno-debug-macro
-fno-declspec
-fno-delayed-template-
parsing
-fno-delete-null-pointer-
checks
-fno-diagnostics-fixit-info
-fno-digraphs

-fno-discard-value-names
-fno-dollars-in-identifiers
-fno-double-square-
bracket-attributes
-fno-elide-constructors
-fno-elide-type
-fno-eliminate-unused-
debug-types
-fno-exceptions
-fno-experimental-new-
pass-manager

-fno-experimental-relative-

c++-abi-vtables

Support
Supported

Supported
Supported

Supported
Supported

Supported
Supported
Supported

Supported

Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Unsupported
Supported
Unsupported
Supported
Supported

Supported
Supported

Supported
Supported
Supported

Supported
Supported
Supported

Supported
Supported

Supported

1.0 Rev.1217 December 2020

Description
Dot-separated value representing the Microsoft compiler version
number to report in _MSC _VER (0 = don't define it (default))
Enable full Microsoft Visual C++ compatibility
Accept some non-standard constructs supported by the Microsoft
compiler
Microsoft compiler version number to report in _MSC_VER (0 =
don't define it (default))
Specifies the largest alignment guaranteed by "::operator
new(size_t)'
Don't emit an address-significance table
Allow Fortran GNU extensions
Don't assume that C++'s global operator new can't alias any
pointer
Disable generation of linker directives for automatic library
linking
Treat backslash like any other character in character strings
Disable implicit builtin knowledge of a specific function
Disable implicit builtin knowledge of functions
Disable C++ static destructor registration
Disable C++ builtin type char8_t
Disable colors in diagnostics
Compile common globals like normal definitions
Do not require member pointer base types to be complete if they
would be significant under the Microsoft ABI
Disable creation of CodeFoundation-type constant strings
Disable code coverage analysis
Disable auto-generation of preprocessed source files and a script
for reproduction during a clang crash
Don't use approximate transcendental functions

Do not emit macro debug information
Disallow __declspec as a keyword
Disable delayed template parsing

Do not treat usage of null pointers as undefined behavior

Do not include fixit information in diagnostics

Disallow alternative token representations '<:', ":>', '<%', '%>',
'%:', '%:%:"'

Do not discard value names in LLVM IR

Disallow '$' in identifiers

Disable '[[]]" attributes in all C and C++ language modes

Disable C++ copy constructor elision
Do not elide types when printing diagnostics
Emit debug info for defined but unused types

Disable support for exception handling
Disables an experimental new pass manager in LLVM.

Do not use the experimental C++ class ABI for classes with
virtual tables

88

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description
-fno-fine-grained-bitfield- Supported Use large-integer access for consecutive bitfield runs.
accesses
-fno-fixed-form Supported Disable fixed-form format for Fortran
-fno-fixed-point Supported Disable fixed point types
-fno-force-enable-int128 Supported Disable support for int128 t type
-fno-fortran-main Supported Don't link in Fortran main
-fno-free-form Supported Disable free-form format for Fortran
-fno-func-args-alias Supported Function argument may alias (equivalent to ansi alias)
-fno-global-isel Supported Disables the global instruction selector
-fno-gnu-inline-asm Supported Disable GNU style inline asm
-fno-gpu-allow-device-init Supported Don't allow device-side init function in HIP
-fno-hip-new-launch-api Supported Don't use new kernel launching API for HIP
-fno-integrated-as Supported Disable the integrated assembler
-fno-integrated-ccl Supported Spawn a separate process for each ccl
-fno-jump-tables Supported Do not use jump tables for lowering switches
-fno-keep-static-consts Supported Don't keep static const variables if unused
-fno-Ito Supported Disable LTO mode (default)
-fno-memory-profile Supported Disable heap memory profiling
-fno-merge-all-constants Supported Disallow merging of constants
-fno-no-access-control Supported Disable C++ access control
-fno-objc-infer-related- Supported do not infer Objective-C related result type based on method
result-type family
-fno-operator-names Supported Do not treat C++ operator name keywords as synonyms for
operators
-fno-pch-codegen Supported Do not generate code for uses of this PCH that assumes an explicit
object file will be built for the PCH
-fno-pch-debuginfo Supported Do not generate debug info for types in an object file built from
this PCH and do not generate them elsewhere
-fno-plt Supported Use GOT indirection instead of PLT to make external function
calls (x86 only)
-fno-preserve-as-comments | Supported Do not preserve comments in inline assembly
-fno-profile-generate Supported Disable generation of profile instrumentation.
-fno-profile-instr-generate Supported Disable generation of profile instrumentation.
-fno-profile-instr-use Supported Disable using instrumentation data for profile-guided optimization
-fno-register-global-dtors- Supported Don't use atexit or __cxa_atexit to register global destructors
with-atexit
-fno-rtlib-add-rpath Supported Do not add -rpath with architecture-specific resource directory to
the linker flags
-fno-rtti-data Supported Disable generation of RTTI data
-fno-rtti Supported Disable generation of rtti information
-fno-sanitize-address- Supported on = Disable poisoning array cookies when using custom operator
poison-custom-array-cookie = Host only new[] in AddressSanitizer
-fno-sanitize-address-use- Supported on | Disable use-after-scope detection in AddressSanitizer
after-scope Host only
-fno-sanitize-address-use- Supported on = Disable ODR indicator globals
odr-indicator Host only
-fno-sanitize-blacklist Supported on | Don't use blacklist file for sanitizers
Host only
-fno-sanitize-cfi-canonical- = Supported on Do not make the jump table addresses canonical in the symbol
jump-tables Host only table
-fno-sanitize-cfi-cross-dso Supported on | Disable control flow integrity (CFI) checks for cross-DSO calls.
Host only
Chapter 6 Appendix B — Supported Clang Options 89

AMDA

HIP Programming Guide

Option
-fno-sanitize-
coverage=<value>
-fno-sanitize-memory-
track-origins
-fno-sanitize-memory-use-
after-dtor
-fno-sanitize-
recover=<value>
-fno-sanitize-stats

-fno-sanitize-thread-
atomics
-fno-sanitize-thread-func-
entry-exit
-fno-sanitize-thread-
memory-access
-fno-sanitize-trap=<value>

-fno-sanitize-trap

-fno-short-wchar
-fno-show-column
-fno-show-source-location
-fno-signed-char
-fno-signed-zeros
-fno-spell-checking
-fno-split-machine-
functions
-fno-stack-clash-protection
-fno-stack-protector
-fno-standalone-debug
-fno-strict-float-cast-
overflow
-fno-strict-return

-fno-sycl
-fno-temp-file

-fno-threadsafe-statics
-fno-trigraphs
-fno-unique-section-names
-fno-unroll-loops
-fno-use-cxa-atexit
-fno-use-flang-math-libs

-fno-use-init-array
-fno-visibility-inlines-
hidden-static-local-var
-fno-xray-function-index

-fno-zero-initialized-in-bss

Support
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported
Supported

Supported

Unsupported
Supported

Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported

Unsupported

Supported

1.0 Rev.1217 December 2020

Description
Disable specified features of coverage instrumentation for
Sanitizers
Disable origins tracking in MemorySanitizer

Disable use-after-destroy detection in MemorySanitizer
Disable recovery for specified sanitizers

Disable sanitizer statistics gathering.

Disable atomic operations instrumentation in ThreadSanitizer
Disable function entry/exit instrumentation in ThreadSanitizer
Disable memory access instrumentation in ThreadSanitizer
Disable trapping for specified sanitizers

Disable trapping for all sanitizers

Force wchar_t to be an unsigned int

Do not include column number on diagnostics

Do not include source location information with diagnostics

char is unsigned

Allow optimizations that ignore the sign of floating point zeros
Disable spell-checking

Disable late function splitting using profile information (x86 ELF)

Disable stack clash protection

Disable the use of stack protectors

Limit debug information produced to reduce size of debug binary
Relax language rules and try to match the behavior of the target's
native float-to-int conversion instructions

Don't treat control flow paths that fall off the end of a non-void
function as unreachable

Disable SYCL kernels compilation for device

Directly create compilation output files. This may lead to
incorrect incremental builds if the compiler crashes

Do not emit code to make initialization of local statics thread safe
Do not process trigraph sequences

Don't use unique names for text and data sections

Turn off loop unroller

Don't use _ cxa_atexit for calling destructors

Use Flang internal runtime math library instead of LLVVM math
intrinsics.

Use .ctors/.dtors instead of .init_array/.fini_array

Disables -fvisibility-inlines-hidden-static-local-var (this is the
default on non-darwin targets)

Omit function index section at the expense of single-function
patching performance

Don't place zero initialized data in BSS

90

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description

-fobjc-arc-exceptions Unsupported = Use EH-safe code when synthesizing retains and releases in -
fobjc-arc

-fobjc-arc Unsupported | Synthesize retain and release calls for Objective-C pointers

-fobjc-exceptions Unsupported = Enable Objective-C exceptions

-fobjc-runtime=<value> Unsupported | Specify the target Objective-C runtime kind and version

-fobjc-weak Unsupported = Enable ARC-style weak references in Objective-C

-fopenmp-simd Unsupported | Emit OpenMP code only for SIMD-based constructs.

-fopenmp-targets=<value> Unsupported = Specify a comma-separated list of triples OpenMP offloading
targets to be supported

-fopenmp Unsupported | Parse OpenMP pragmas and generate parallel code.

-foptimization-record- Supported Specify the output name of the file containing the optimization

file=<file> remarks. Implies -fsave-optimization-record. On Darwin
platforms, this cannot be used with multiple -arch <arch> options.

-foptimization-record- Supported Only include passes that match a specified regular expression in

passes=<regex> the generated optimization record (by default, include all passes)

-forder-file-instrumentation = Supported Generate instrumented code to collect order file into
default.profraw file (overridden by '=' form of option or
LLVM_PROFILE FILE env var)

-fpack-struct=<value> Unsupported | Specify the default maximum struct packing alignment

-fpascal-strings Supported Recognize and construct Pascal-style string literals

-fpass-plugin=<dsopath> Supported Load pass plugin from a dynamic shared object file (only with
new pass manager).

-fpatchable-function- Supported Generate M NOPs before function entry and N-M NOPs after

entry=<N,M> function entry

-fpce-struct-return Unsupported | Override the default ABI to return all structs on the stack

-fpch-codegen Supported Generate code for uses of this PCH that assumes an explicit object
file will be built for the PCH

-fpch-debuginfo Supported Generate debug info for types in an object file built from this PCH
and do not generate them elsewhere

-fpch-instantiate-templates | Supported Instantiate templates already while building a PCH

-fpch-validate-input-files- Supported Validate PCH input files based on content if mtime differs

content

-fplugin=<dsopath> Supported Load the named plugin (dynamic shared object)

-fprebuilt-module- Unsupported | Specify the prebuilt module path

path=<directory>

-fprofile-exclude- Unsupported Instrument only functions from files where names don't match all

files=<value> the regexes separated by a semi-colon

-fprofile-filter-files=<value> = Unsupported | Instrument only functions from files where names match any
regex separated by a semi-colon

-fprofile- Unsupported = Generate instrumented code to collect execution counts into

generate=<directory> <directory>/default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fprofile-generate Unsupported | Generate instrumented code to collect execution counts into
default.profraw (overridden by LLVM_PROFILE_FILE env var)

-fprofile-instr- Unsupported = Generate instrumented code to collect execution counts into <file>

generate=<file> (overridden by LLVM_PROFILE_FILE env var)

-fprofile-instr-generate Unsupported | Generate instrumented code to collect execution counts into
default.profraw file (overridden by '=' form of option or
LLVM_PROFILE _FILE env var)

-fprofile-instr-use=<value> = Unsupported = Use instrumentation data for profile-guided optimization

-fprofile-remapping- Unsupported | Use the remappings described in <file> to match the profile data

file=<file> against names in the program

-fprofile-sample-accurate Unsupported = Specifies that the sample profile is accurate

Chapter 6 Appendix B — Supported Clang Options 91

AMDA

HIP Programming Guide

Option
-fprofile-sample-
use=<value>
-fprofile-use=<pathname>

-freciprocal-math
-freg-struct-return
-fregister-global-dtors-
with-atexit
-frelaxed-template-
template-args
-freroll-loops

-fropi
-frtlib-add-rpath

-frwpi
-fsanitize-address-field-
padding=<value>
-fsanitize-address-globals-
dead-stripping
-fsanitize-address-poison-
custom-array-cookie
-fsanitize-address-use-after-
scope
-fsanitize-address-use-odr-
indicator

-fsanitize-blacklist=<value>

-fsanitize-cfi-canonical-
jump-tables
-fsanitize-cfi-cross-dso

-fsanitize-cfi-icall-
generalize-pointers
-fsanitize-coverage-
allowlist=<value>

-fsanitize-coverage-
blacklist=<value>
-fsanitize-coverage-
blocklist=<value>

-fsanitize-coverage-
whitelist=<value>
-fsanitize-coverage=<value>

-fsanitize-hwaddress-
abi=<value>
-fsanitize-memory-track-
origins=<value>

Support
Unsupported

Unsupported

Supported
Unsupported
Supported

Supported

Supported
Unsupported
Supported

Unsupported
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only

Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only

Supported on
Host only
Supported on
Host only

Supported on
Host only
Supported on
Host only
Supported on
Host only
Supported on
Host only

1.0 Rev.1217 December 2020

Description
Enable sample-based profile guided optimizations

Use instrumentation data for profile-guided optimization. If
pathname is a directory, it reads from
<pathname>/default.profdata. Otherwise, it reads from file
<pathname>.

Allow division operations to be reassociated

Override the default ABI to return small structs in registers
Use atexit or __cxa_atexit to register global destructors

Enable C++17 relaxed template argument matching

Turn on loop reroller

Generate read-only position independent code (ARM only)
Add -rpath with architecture-specific resource directory to the
linker flags

Generate read-write position independent code (ARM only)
Level of field padding for AddressSanitizer

Enable linker dead stripping of globals in AddressSanitizer

Enable poisoning array cookies when using custom operator
new[] in AddressSanitizer
Enable use-after-scope detection in AddressSanitizer

Enable ODR indicator globals to avoid false ODR violation
reports in partially sanitized programs at the cost of an increase in
binary size

Path to blacklist file for sanitizers

Make the jump table addresses canonical in the symbol table
Enable control flow integrity (CFI) checks for cross-DSO calls.
Generalize pointers in CFI indirect call type signature checks

Restrict sanitizer coverage instrumentation exclusively to modules
and functions that match the provided special case list, except the
blocked ones

Deprecated, use -fsanitize-coverage-blocklist= instead

Disable sanitizer coverage instrumentation for modules and
functions that match the provided special case list, even the
allowed ones

Deprecated, use -fsanitize-coverage-allowlist= instead

Specify the type of coverage instrumentation for Sanitizers
Select the HWAddressSanitizer ABI to target (interceptor or

platform, default interceptor). This option is currently unused.
Enable origins tracking in MemorySanitizer

92

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description
-fsanitize-memory-track- Supported on | Enable origins tracking in MemorySanitizer
origins Host only
-fsanitize-memory-use- Supported on = Enable use-after-destroy detection in MemorySanitizer
after-dtor Host only
-fsanitize-recover=<value> | Supported on | Enable recovery for specified sanitizers
Host only
-fsanitize-stats Supported on = Enable sanitizer statistics gathering.
Host only
-fsanitize-system- Supported on | Path to system blacklist file for sanitizers
blacklist=<value> Host only
-fsanitize-thread-atomics Supported on = Enable atomic operations instrumentation in ThreadSanitizer
Host only (default)
-fsanitize-thread-func- Supported on | Enable function entry/exit instrumentation in ThreadSanitizer
entry-exit Host only (default)
-fsanitize-thread-memory- = Supported on =~ Enable memory access instrumentation in ThreadSanitizer
access Host only (default)
-fsanitize-trap=<value> Supported on | Enable trapping for specified sanitizers
Host only
-fsanitize-trap Supported on = Enable trapping for all sanitizers
Host only
-fsanitize-undefined-strip- Supported on | Strip (or keep only, if negative) a given number of path
path- Host only components when emitting check metadata.
components=<number>
-fsanitize=<check> Supported on | Turn on runtime checks for various forms of undefined or
Host only suspicious behavior. See user manual for available checks
-fsave-optimization- Supported Generate an optimization record file in a specific format
record=<format>
-fsave-optimization-record | Supported Generate a YAML optimization record file
-fseh-exceptions Supported Use SEH style exceptions
-fshort-enums Supported Allocate to an enum type only as many bytes as it needs for the
declared range of possible values
-fshort-wchar Unsupported | Force wchar_t to be a short unsigned int
-fshow-overloads=<value> Supported Which overload candidates to show when overload resolution
fails: best\|all; defaults to all
-fsigned-char Supported char is signed
-fsized-deallocation Supported Enable C++14 sized global deallocation functions
-fsjlj-exceptions Supported Use SjLj style exceptions
-fslp-vectorize Supported Enable the superword-level parallelism vectorization passes
-fsplit-dwarf-inlining Unsupported | Provide minimal debug info in the object/executable to facilitate
online symbolication/stack traces in the absence of .dwo/.dwp
files when using Split DWARF
-fsplit-Ito-unit Unsupported | Enables splitting of the LTO unit
-fsplit-machine-functions Supported Enable late function splitting using profile information (x86 ELF)
-fstack-clash-protection Supported Enable stack clash protection
-fstack-protector-all Unsupported | Enable stack protectors for all functions
-fstack-protector-strong Unsupported = Enable stack protectors for some functions vulnerable to stack
smashing. Compared to -fstack-protector, this uses a stronger
heuristic that includes functions containing arrays of any size (and
any type), as well as any calls to alloca or the taking of an address
from a local variable
-fstack-protector Unsupported | Enable stack protectors for some functions vulnerable to stack
smashing. This uses a loose heuristic that considers functions
vulnerable if they contain a char (or 8bit integer) array or constant
Chapter 6 Appendix B — Supported Clang Options 93

AMDA

HIP Programming Guide

Option

-fstack-size-section
-fstandalone-debug
-fstrict-enums

-fstrict-float-cast-overflow
-fstrict-vtable-pointers

-fsycl
-fsystem-module

-fthin-link-bitcode=<value>
-fthinlto-index=<value>

-ftime-trace-
granularity=<value>
-ftime-trace

-ftrap-function=<value>
-ftrapv-handler=<function
name>

-ftrapv

-ftrigraphs
-ftrivial-auto-var-init-stop-
after=<value>
-ftrivial-auto-var-
init=<value>
-funique-basic-block-
section-names
-funique-internal-linkage-
names

-funroll-loops
-fuse-flang-math-libs

-fuse-line-directives
-fvalidate-ast-input-files-
content

-fveclib=<value>
-fvectorize
-fverbose-asm
-fvirtual-function-
elimination
-fvisibility-global-new-
delete-hidden

Support

Supported
Supported
Supported

Supported
Supported

Unsupported
u

Supported
Unsupported

Supported
Supported

Unsupported
Unsupported

Unsupported
Supported
Supported
Supported
Supported
Supported

Supported
Supported

Supported
Supported

Unsupported
Unsupported
Supported
Supported

Supported

1.0 Rev.1217 December 2020

Description
sized calls to alloca , which are of greater size than ssp-buffer-size
(default: 8 bytes). All variable sized calls to alloca are considered
vulnerable. A function with a stack protector has a guard value
added to the stack frame that is checked on function exit. The
guard value must be positioned in the stack frame such that a
buffer overflow from a vulnerable variable will overwrite the
guard value before overwriting the function's return address. The
reference stack guard value is stored in a global variable.
Emit section containing metadata on function stack sizes
Emit full debug info for all types used by the program
Enable optimizations based on the strict definition of an enum's
value range
Assume that overflowing float-to-int casts are undefined (default)
Enable optimizations based on the strict rules for overwriting
polymorphic C++ objects
Enable SYCL kernels compilation for device
Build this module as a system module. Only used with -emit-
module
Write minimized bitcode to <file> for the ThinLTO thin link only
Perform ThinLTO importing using the provided function
summary index
Minimum time granularity (in microseconds) traced by time
profiler
Turn on time profiler. Generates JSON file based on output
filename.
Issue call to specified function rather than a trap instruction
Specify the function to be called on overflow

Trap on integer overflow

Process trigraph sequences

Stop initializing trivial automatic stack variables after the
specified number of instances

Initialize trivial automatic stack variables: uninitialized (default) \|
pattern

Use unique names for basic block sections (ELF Only)

Uniqueify Internal Linkage Symbol Names by appending the
MD5 hash of the module path

Turn on loop unroller

Use Flang internal runtime math library instead of LLVVM math
intrinsics.

Use #line in preprocessed output

Compute and store the hash of input files used to build an AST.
Files with mismatching mtime's are considered valid if both
contents is identical

Use the given vector functions library

Enable the loop vectorization passes

Generate verbose assembly output

Enables dead virtual function elimination optimization. Requires -
flto=full

Give global C++ operator new and delete declarations hidden
visibility

94

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020

Option
-fvisibility-inlines-hidden-
static-local-var

-fvisibility-inlines-hidden
-fvisibility-ms-compat

-fvisibility=<value>
-fwasm-exceptions
-fwhole-program-vtables
-fwrapv
-fwritable-strings
-fxray-always-emit-
customevents
-fxray-always-emit-
typedevents
-fxray-always-instrument=
<value>

-fxray-attr-list= <value>

-fxray-ignore-loops

-fxray-instruction-
threshold= <value>
-fxray-instrumentation-
bundle= <value>

-fxray-instrument
-fxray-link-deps
-fxray-modes= <value>

-fxray-never-instrument=
<value>

-fzvector

-F <value>
--gcc-toolchain=<value>
-gcodeview-ghash
-gcodeview

-gdwarf-2

-gdwarf-3

-gdwarf-4

-gdwarf-5

-gdwarf

-gembed-source
-gline-directives-only
-gline-tables-only
-gmodules
-gno-embed-source

-gno-inline-line-tables

Support
Supported

Supported
Supported

Supported
Unsupported
Unsupported
Supported
Supported
Unsupported

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

Unsupported

Unsupported
Unsupported
Unsupported

Unsupported

Supported
Unsupported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported
Supported
Supported

Supported

HIP Programming Guide

Description
When -fvisibility-inlines-hidden is enabled, static variables in
inline C++ member functions will also be given hidden visibility
by default
Give inline C++ member functions hidden visibility by default
Give global types 'default’ visibility and global functions and
variables ‘hidden' visibility by default
Set the default symbol visibility for all global declarations
Use WebAssembly style exceptions
Enables whole-program vtable optimization. Requires -flto
Treat signed integer overflow as two's complement
Store string literals as writable data
Always emit __ xray_customevent(...) calls even if the containing
function is not always instrumented
Always emit __ xray_typedevent(...) calls even if the containing
function is not always instrumented
DEPRECATED: Filename defining the whitelist for imbuing the
‘always instrument' XRay attribute.
Filename defining the list of functions/types for imbuing XRay
attributes.
Don't instrument functions with loops unless they also meet the
minimum function size
Sets the minimum function size to instrument with XRay

Select which XRay instrumentation points to emit. Options: all,
none, function-entry, function-exit, function, custom. Default is
all'. "function’ includes both ‘function-entry' and 'function-exit'.
Generate XRay instrumentation sleds on function entry and exit
Tells clang to add the link dependencies for XRay.

List of modes to link in by default into XRay instrumented
binaries.

DEPRECATED: Filename defining the whitelist for imbuing the
'never instrument' XRay attribute.

Enable System z vector language extension

Add directory to framework include search path

Use the gcc toolchain at the given directory

Emit type record hashes in a .debug$H section

Generate CodeView debug information

Generate source-level debug information with dwarf version 2
Generate source-level debug information with dwarf version 3
Generate source-level debug information with dwarf version 4
Generate source-level debug information with dwarf version 5
Generate source-level debug information with the default dwarf
version

Embed source text in DWARF debug sections

Emit debug line info directives only

Emit debug line number tables only

Generate debug info with external references to clang modules or
precompiled headers

Restore the default behavior of not embedding source text in
DWARF debug sections

Don't emit inline line tables

Chapter 6

Appendix B — Supported Clang Options 95

AMDA

HIP Programming Guide

Option
--gpu-max-threads-per-
block=<value>
-gsplit-dwarf=<value>
-gz=<value>
-gz
-G <size>

--help-hidden

-help
--hip-device-lib=<value>
--hip-link
--hip-version=<value>
-H

-1-

-ibuiltininc

-idirafter <value>
-iframeworkwithsysroot
<directory>
-iframework <value>
-imacros <file>
-include-pch <file>
-include <file>
-index-header-map
-iprefix <dir>
-iquote <directory>
-isysroot <dir>

-isystem-after <directory>

-isystem <directory>
-ivfsoverlay <value>

-iwithprefixbefore <dir>
-iwithprefix <dir>
-iwithsysroot <directory>

-1 <dir>

--libomptarget-nvptx-
path=<value>

-L <dir>

-mabicalls
-maix-struct-return
-malign-branch-
boundary=<value>
-malign-branch=<value>
-malign-double

Support
Supported

Supported
Supported
Supported
Unsupported

Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported

Supported
Unsupported

Unsupported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Supported

Unsupported

Supported
Unsupported
Unsupported
Supported

Supported
Supported

1.0 Rev.1217 December 2020

Description
Default max threads per block for kernel launch bounds for HIP

Set DWAREF fission mode to either 'split' or 'single’

DWARF debug sections compression type

DWARF debug sections compression type

Put objects of at most <size> bytes into small data section (MIPS /
Hexagon)

Generate source-level debug information

Display help for hidden options

Display available options

HIP device library

Link clang-offload-bundler bundles for HIP

HIP version in the format of major.minor.patch

Show header includes and nesting depth

Restrict all prior -1 flags to double-quoted inclusion and remove
the current directory from include path

Enable builtin #include directories even when -nostdinc is used
before or after -ibuiltininc. Using -nobuiltininc after the option
disables it

Add directory to AFTER include search path

Add directory to SYSTEM framework search path, absolute paths
are relative to -isysroot

Add directory to SYSTEM framework search path

Include macros from file before parsing

Include precompiled header file

Include file before parsing

Make the next included directory (-1 or -F) an indexer header map
Set the -iwithprefix/-iwithprefixbefore prefix

Add directory to QUOTE include search path

Set the system root directory (usually /)

Add directory to end of the SYSTEM include search path

Add directory to SYSTEM include search path

Overlay the virtual filesystem described by file over the real file
system

Set directory to include search path with prefix

Set directory to SYSTEM include search path with prefix

Add directory to SYSTEM include search path, absolute paths are
relative to -isysroot

Add directory to include search path. If there are multiple -I
options, these directories are searched in the order they are given
before the standard system directories are searched. If the same
directory is in the SYSTEM include search paths, for example, if
also specified with -isystem, the -1 option will be ignored

Path to libomptarget-nvptx libraries

Add directory to library search path

Enable SVR4-style position-independent code (Mips only)
Return all structs in memory (PPC32 only)

Specify the boundary's size to align branches

Specify types of branches to align
Align doubles to two words in structs (x86 only)

96

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description

-Mallocatable=<value> Unsupported | Select semantics for assignments to allocatables (FO3 or F95)

-mbackchain Unsupported Link stack frames through backchain on System Z

-mbranch- Unsupported | Enforce targets of indirect branches and function returns

protection=<value>

-mbranches-within-32B- Supported Align selected branches (fused, jcc, jmp) within 32-byte boundary

boundaries

-mcmodel=medany Unsupported | Equivalent to -mcmodel=medium, compatible with RISC-V gcc.

-mcmodel=medlow Unsupported = Equivalent to -mcmodel=small, compatible with RISC-V gcc.

-mcmse Unsupported | Allow use of CMSE (Armv8-M Security Extensions)

-mcode-object-v3 Supported Legacy option to specify code object ABI V2 (-mnocode-object-
v3) or V3 (-mcode-object-v3) (AMDGPU only)

-mcode-object- Supported Specify code object ABI version. Defaults to 4. (AMDGPU only)

version=<version>

-mcrc Unsupported = Allow use of CRC instructions (ARM/Mips only)

-mcumode Supported Specify CU (-mcumode) or WGP (-mno-cumode) wavefront
execution mode (AMDGPU only)

-mdouble=<value> Supported Force double to be 32 bits or 64 bits

-MD Supported Write a depfile containing user and system headers

-meabi <value> Supported Set EABI type, e.g. 4, 5 or gnu (default depends on triple)

-membedded-data Unsupported | Place constants in the .rodata section instead of the .sdata section
even if they meet the -G <size> threshold (MIPS)

-menable-experimental- Unsupported = Enable use of experimental RISC-V extensions.

extensions

-mexec-model=<value> Unsupported | Execution model (WebAssembly only)

-mexecute-only Unsupported = Disallow generation of data access to code sections (ARM only)

-mextern-sdata Unsupported | Assume that externally defined data is in the small data if it meets
the -G <size> threshold (MIPS)

-mfentry Unsupported Insert calls to fentry at function entry (x86/SystemZ only)

-mfix-cortex-a53-835769 Unsupported | Workaround Cortex-A53 erratum 835769 (AArch64 only)

-mfp32 Unsupported = Use 32-bit floating point registers (MIPS only)

-mfp64 Unsupported | Use 64-bit floating point registers (MIPS only)

-MF <file> Supported Write depfile output from -MMD, -MD, -MM, or -M to <file>

-mgeneral-regs-only Unsupported | Generate code which only uses the general purpose registers
(AArch64 only)

-mglobal-merge Supported Enable merging of globals

-mgpopt Unsupported | Use GP relative accesses for symbols known to be in a small data
section (MIPS)

-MG Supported Add missing headers to depfile

-mharden-sls=<value> Unsupported | Select straight-line speculation hardening scope

-mhvx-length=<value> Unsupported = Set Hexagon Vector Length

-mhvx=<value> Unsupported | Enable Hexagon Vector eXtensions

-mhvx Unsupported = Enable Hexagon Vector eXtensions

-miamcu Unsupported | Use Intel MCU ABI

--migrate Unsupported = Run the migrator

-mincremental-linker- Supported (integrated-as) Emit an object file that can be used with an

compatible incremental linker

-mindirect-jump=<value> Unsupported = Change indirect jump instructions to inhibit speculation

-Minform=<value> Supported Set error level of messages to display

-mios-version-min=<value> | Unsupported Set iOS deployment target

-MJ <value> Unsupported | Write a compilation database entry per input

-mllvm <value> Supported Additional arguments to forward to LLVVM's option processing

-mlocal-sdata Unsupported | Extend the -G behavior to object local data (MIPS)

Chapter 6 Appendix B — Supported Clang Options 97

AMDA

HIP Programming Guide

1.0 Rev.1217 December 2020

Option Support Description
-mlong-calls Supported Generate branches with extended addressability, usually via
indirect jumps.
-mlong-double-128 Supported on | Force long double to be 128 bits
Host only
-mlong-double-64 Supported Force long double to be 64 bits
-mlong-double-80 Supported on | Force long double to be 80 bits, padded to 128 bits for storage
Host only
-mlvi-cfi Supported on | Enable only control-flow mitigations for Load Value Injection
Host only (LVvI)
-mlvi-hardening Supported on | Enable all mitigations for Load Value Injection (LVI)
Host only
-mmacosx-version- Unsupported = Set Mac OS X deployment target
min=<value>
-mmadd4 Supported Enable the generation of 4-operand madd.s, madd.d and related
instructions.
-mmark-bti-property Unsupported = Add .note.gnu.property with BTI to assembly files (AArch64
only)
-MMD Supported Write a depfile containing user headers
-mmemops Supported Enable generation of memop instructions
-mms-bitfields Unsupported | Set the default structure layout to be compatible with the
Microsoft compiler standard
-mmsa Unsupported Enable MSA ASE (MIPS only)
-mmt Unsupported | Enable MT ASE (MIPS only)
-MM Supported Like -MMD, but also implies -E and writes to stdout by default
-mno-abicalls Unsupported | Disable SVR4-style position-independent code (Mips only)
-mno-crc Unsupported = Disallow use of CRC instructions (Mips only)
-mno-embedded-data Unsupported | Do not place constants in the .rodata section instead of the .sdata
if they meet the -G <size> threshold (MIPS)
-mno-execute-only Unsupported = Allow generation of data access to code sections (ARM only)
-mno-extern-sdata Unsupported | Do not assume that externally defined data is in the small data if it
meets the -G <size> threshold (MIPS)
-mno-fix-cortex-a53-835769 = Unsupported = Don't workaround Cortex-A53 erratum 835769 (AArch64 only)
-mno-global-merge Supported Disable merging of globals
-mno-gpopt Unsupported = Do not use GP relative accesses for symbols known to be in a
small data section (MIPS)
-mno-hvx Unsupported | Disable Hexagon Vector eXtensions
-mno-implicit-float Supported Don't generate implicit floating point instructions
-mno-incremental-linker- Supported (integrated-as) Emit an object file which cannot be used with an
compatible incremental linker
-mno-local-sdata Unsupported = Do not extend the -G behaviour to object local data (MIPS)
-mno-long-calls Supported Restore the default behaviour of not generating long calls
-mno-lvi-cfi Supported on | Disable control-flow mitigations for Load Value Injection (LVI)
Host only
-mno-lvi-hardening Supported on | Disable mitigations for Load Value Injection (LVI)
Host only
-mno-madd4 Supported Disable the generation of 4-operand madd.s, madd.d and related
instructions.
-mno-memops Supported Disable generation of memop instructions
-mno-movt Supported Disallow use of movt/movw pairs (ARM only)
-mno-ms-bitfields Supported Do not set the default structure layout to be compatible with the
Microsoft compiler standard
-mno-msa Unsupported = Disable MSA ASE (MIPS only)
98 Appendix B — Supported Clang Options Chapter 6

[AMD Public Use]

AMDZ1
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description
-mno-mt Unsupported | Disable MT ASE (MIPS only)
-mno-neg-immediates Supported Disallow converting instructions with negative immediates to their
negation or inversion.
-MmNo-nvj Supported Disable generation of new-value jumps
-mno-nvs Supported Disable generation of new-value stores
-mno-outline Unsupported | Disable function outlining (AArch64 only)
-mno-packets Supported Disable generation of instruction packets
-mno-relax Supported Disable linker relaxation
-mno-restrict-it Unsupported = Allow generation of deprecated IT blocks for ARMVS. It is off by
default for ARMv8 Thumb mode
-mno-save-restore Unsupported | Disable using library calls for save and restore
-MNO-Seses Unsupported = Disable speculative execution side effect suppression (SESES)
-mno-stack-arg-probe Supported Disable stack probes which are enabled by default
-mno-tls-direct-seg-refs Supported Disable direct TLS access through segment registers
-mno-unaligned-access Unsupported | Force all memory accesses to be aligned (AArch32/AArch64
only)
-mno-wavefrontsize64 Supported Specify wavefront size 32 mode (AMDGPU only)
-mnocrc Unsupported | Disallow use of CRC instructions (ARM only)
-mnop-mcount Supported Generate mcount/__fentry _ calls as nops. To activate they need
to be patched in.
-mnvj Supported Enable generation of new-value jumps
-mnvs Supported Enable generation of new-value stores
-module-dependency-dir Unsupported | Directory to dump module dependencies to
<value>
-module-file-info Unsupported = Provide information about a particular module file
-momit-leaf-frame-pointer | Supported Omit frame pointer setup for leaf functions
-moutline Unsupported = Enable function outlining (AArch64 only)
-mpacked-stack Unsupported | Use packed stack layout (SystemZ only).
-mpackets Supported Enable generation of instruction packets
-mpad-max-prefix- Supported Specify maximum number of prefixes to use for padding
size=<value>
-mpie-copy-relocations Supported Use copy relocations support for PIE builds
-mprefer-vector- Unsupported | Specifies preferred vector width for auto-vectorization. Defaults
width=<value> to 'none’ which allows target specific decisions.
-MP Supported Create phony target for each dependency (other than main file)
-mqdsp6-compat Unsupported | Enable hexagon-qdsp6 backward compatibility
-MQ <value> Supported Specify name of main file output to quote in depfile
-mrecord-mcount Supported Generate a __mcount_loc section entry for each _ fentry call.
-mrelax-all Supported (integrated-as) Relax all machine instructions
-mrelax Supported Enable linker relaxation
-mrestrict-it Unsupported = Disallow generation of deprecated IT blocks for ARMVS. It is on
by default for ARMv8 Thumb mode.
-mrtd Unsupported | Make StdCall calling convention the default
-msave-restore Unsupported = Enable using library calls for save and restore
-mseses Unsupported | Enable speculative execution side effect suppression (SESES).
Includes LVI control flow integrity mitigations
-msign-return- Unsupported = Select return address signing scope
address=<value>
-msmall-data-limit=<value> | Supported Put global and static data smaller than the limit into a special
section
-msoft-float Supported Use software floating point
Chapter 6 Appendix B — Supported Clang Options 99

AMDA

HIP Programming Guide

Option
-msrame-ecc

-mstack-alignment=<value>
-mstack-arg-probe
-mstack-probe-
size=<value>
-mstackrealign
-msve-vector-bits=<value>

-msvr4-struct-return
-mthread-model <value>
-mtls-direct-seg-refs
-mtls-size=<value>

-mtp=<value>
-mtune=<value>

-MT <value>
-munaligned-access

-MV
-mwavefrontsize64
-mxnack

-M

--no-cuda-include-
ptx=<value>
--no-cuda-version-check

-no-flang-libs
--no-offload-arch=<value>

--no-system-header-
prefix=<prefix>
-nobuiltininc
-nogpuinc

-nogpulib

-nostdinc++

-ObjC++
-objcmt-atomic-property
-objcmt-migrate-all
-objcmt-migrate-annotation
-objcmt-migrate-
designated-init
-objcmt-migrate-
instancetype
-objcmt-migrate-literals
-objcmt-migrate-ns-macros

Support
Supported

Unsupported
Unsupported
Unsupported

Unsupported
Unsupported

Unsupported
Supported
Supported
Unsupported

Unsupported
Supported on
Host only

Unsupported
Unsupported

Supported
Supported
Supported

Supported
Supported

Supported

Supported
Supported

Supported

Supported
Supported

Supported

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

Unsupported

Unsupported
Unsupported

1.0 Rev.1217 December 2020

Description
Legacy option to specify SRAM ECC mode (AMDGPU only).
Should use --offload-arch with :sramecc+ instead
Set the stack alignment
Enable stack probes
Set the stack probe size

Force realign the stack at entry to every function

Specify the size in bits of an SVE vector register. Defaults to the
vector length agnostic value of "scalable”. (AArch64 only)
Return small structs in registers (PPC32 only)

The thread model to use, e.g. posix, single (posix by default)
Enable direct TLS access through segment registers (default)
Specify bit size of immediate TLS offsets (AArch64 ELF only):
12 (for 4KB) \| 24 (for 16MB, default) \| 32 (for 4GB) \| 48 (for
256 TB, needs -mcmodel=large)

Thread pointer access method (AArch32/AArch64 only)

Only supported on X86. Otherwise accepted for compatibility
with GCC.

Specify name of main file output in depfile

Allow memory accesses to be unaligned (AArch32/AArch64
only)

Use NMake/Jom format for the depfile

Specify wavefront size 64 mode (AMDGPU only)

Legacy option to specify XNACK mode (AMDGPU only).
Should use --offload-arch with :xnack+ instead

Like -MD, but also implies -E and writes to stdout by default
Do not include PTX for the following GPU architecture (e.g.
sm_35) or 'all'. May be specified more than once.

Don't error out if the detected version of the CUDA install is too
low for the requested CUDA gpu architecture.

Do not link against Flang libraries

Remove CUDA/HIP offloading device architecture (e.g. sm_35,
gfx906) from the list of devices to compile for. ‘all' resets the list
to its default value.

Treat all #include paths starting with <prefix> as not including a
system header.

Disable builtin #include directories

Do not add CUDA/HIP include paths and include default
CUDAV/HIP wrapper header files

Do not link device library for CUDA/HIP device compilation
Disable standard #include directories for the C++ standard library
Treat source input files as Objective-C++ inputs

Make migration to ‘atomic’ properties

Enable migration to modern ObjC

Enable migration to property and method annotations

Enable migration to infer NS_DESIGNATED_INITIALIZER for
initializer methods

Enable migration to infer instancetype for method result type

Enable migration to modern ObjC literals
Enable migration to NS_ ENUM/NS_OPTIONS macros

100

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA\
1.0 Rev.1217 December 2020 HIP Programming Guide
Option Support Description

-objecmt-migrate-property- | Unsupported = Enable migration of setter/getter messages to property-dot syntax

dot-syntax

-objcmt-migrate-property Unsupported | Enable migration to modern ObjC property

-objcmt-migrate-protocol- Unsupported = Enable migration to add protocol conformance on classes

conformance

-objecmt-migrate-readonly- | Unsupported | Enable migration to modern ObjC readonly property

property

-objcmt-migrate-readwrite- = Unsupported = Enable migration to modern ObjC readwrite property

property

-objcmt-migrate- Unsupported | Enable migration to modern ObjC subscripting

subscripting

-objcmt-ns-nonatomic- Unsupported = Enable migration to use NS_NONATOMIC_IOSONLY macro

iosonly for setting property's 'atomic' attribute

-objcmt-returns- Unsupported | Enable migration to annotate property with

innerpointer-property NS RETURNS INNER_POINTER

-objcmt-whitelist-dir- Unsupported =~ Only modify files with a filename contained in the provided

path=<value> directory path

-ObjC Unsupported | Treat source input files as Objective-C inputs

--offload-arch=<value> Supported CUDA offloading device architecture (e.g. sm_35), or HIP
offloading target ID in the form of a device architecture followed
by target ID features delimited by a colon. Each target ID feature
is a pre-defined string followed by a plus or minus sign (e.g.
gfx908:xnack+:sramecc-). May be specified more than once.

-0 <file> Supported Write output to <file>

-parallel-jobs=<value> Supported Number of parallel jobs

-pg Supported Enable mcount instrumentation

-pipe Supported Use pipes between commands, when possible

--precompile Supported Only precompile the input

-print-effective-triple Supported Print the effective target triple

-print-file-name=<file> Supported Print the full library path of <file>

-print-ivar-layout Unsupported = Enable Objective-C lvar layout bitmap print trace

-print-libgcc-file-name Supported Print the library path for the currently used compiler runtime
library ("libgcc.a" or "libclang_rt.builtins.*.a")

-print-prog-name=<name> | Supported Print the full program path of <name>

-print-resource-dir Supported Print the resource directory pathname

-print-search-dirs Supported Print the paths used for finding libraries and programs

-print-supported-cpus Supported Print supported cpu models for the given target (if target is not
specified, it will print the supported cpus for the default target)

-print-target-triple Supported Print the normalized target triple

-print-targets Supported Print the registered targets

-pthread Supported Support POSIX threads in generated code

--ptxas-path=<value> Unsupported | Path to ptxas (used for compiling CUDA code)

-P Supported Disable linemarker output in -E mode

-Qn Supported Do not emit metadata containing compiler name and version

-Qunused-arguments Supported Don't emit warning for unused driver arguments

-Qy Supported Emit metadata containing compiler name and version

-relocatable-pch Supported Whether to build a relocatable precompiled header

-rewrite-legacy-objc Unsupported | Rewrite Legacy Objective-C source to C++

-rewrite-objc Unsupported = Rewrite Objective-C source to C++

--rocm-device-lib- Supported ROCm device library path. Alternative to rocm-path.

path=<value>

Chapter 6 Appendix B — Supported Clang Options 101

AMDA

HIP Programming Guide

Option
--rocm-path=<value>

-Rpass-analysis=<value>
-Rpass-missed=<value>
-Rpass=<value>

-rtlib=<value>
-R<remark>
-save-stats=<value>
-save-stats
-save-temps=<value>
-save-temps
-serialize-diagnostics
<value>
-shared-libsan
-static-flang-libs
-static-libsan
-static-openmp
-std=<value>
-stdlib++-isystem
<directory>
-stdlib=<value>
-sycl-std=<value>
--system-header-
prefix=<prefix>

-S

--target=<value>
-Tbss <addr>
-Tdata <addr>
-time
-traditional-cpp
-trigraphs

-Ttext <addr>

-T <script>

-undef
-unwindlib=<value>
-U <macro>
--verify-debug-info
-verify-pch
--version

-V

-Wa,<arg>
-Wdeprecated

-Wl,<arg>
-working-directory <value>
-Wp,<arg>

-W<warning>

-w

-Xanalyzer <arg>

Support
Supported

Supported
Supported
Supported

Unsupported
Unsupported
Supported
Supported
Supported
Supported
Supported

Unsupported
Supported
Unsupported
Supported
Supported
Supported

Supported
Unsupported
Supported

Supported
Supported
Supported
Supported
Supported
Unsupported
Supported
Supported
Unsupported
Supported
Supported
Supported
Supported
Unsupported
Supported
Supported
Supported
Supported

Supported
Supported
Supported
Supported
Supported
Supported

1.0 Rev.1217 December 2020

Description
ROCm installation path, used for finding and automatically
linking required bitcode libraries.
Report transformation analysis from optimization passes whose
name matches the given POSIX regular expression
Report missed transformations by optimization passes whose
name matches the given POSIX regular expression
Report transformations performed by optimization passes whose
name matches the given POSIX regular expression
Compiler runtime library to use
Enable the specified remark
Save llvm statistics.
Save llvm statistics.
Save intermediate compilation results.
Save intermediate compilation results
Serialize compiler diagnostics to a file

Dynamically link the sanitizer runtime

Link using static Flang libraries

Statically link the sanitizer runtime

Use the static host OpenMP runtime while linking.
Language standard to compile for

Use directory as the C++ standard library include path

C++ standard library to use

SYCL language standard to compile for.

Treat all #include paths starting with <prefix> as including a
system header.

Only run preprocess and compilation steps

Generate code for the given target

Set starting address of BSS to <addr>

Set starting address of DATA to <addr>

Time individual commands

Enable some traditional CPP emulation

Process trigraph sequences

Set starting address of TEXT to <addr>

Specify <script> as linker script

undef all system defines

Unwind library to use

Undefine macro <macro>

Verify the binary representation of debug output

Load and verify that a pre-compiled header file is not stale
Print version information

Show commands to run and use verbose output

Pass the comma separated arguments in <arg> to the assembler
Enable warnings for deprecated constructs and define

_ DEPRECATED

Pass the comma separated arguments in <arg> to the linker
Resolve file paths relative to the specified directory

Pass the comma separated arguments in <arg> to the preprocessor
Enable the specified warning

Suppress all warnings

Pass <arg> to the static analyzer

102

Appendix B — Supported Clang Options

Chapter 6

[AMD Public Use]

AMDA

1.0 Rev.1217 December 2020

Option Support
-Xarch_device <arg> Supported
-Xarch_host <arg> Supported
-Xassembler <arg> Supported
-Xclang <arg> Supported
-Xcuda-fatbinary <arg> Supported
-Xcuda-ptxas <arg> Supported
-Xlinker <arg> Supported
-Xopenmp-target=<triple> | Supported
<arg>
-Xopenmp-target <arg> Supported
-Xpreprocessor <arg> Supported
-X <language> Supported
-z <arg> Supported

Chapter 7

HIP Programming Guide

Description
Pass <arg> to the CUDA/HIP device compilation
Pass <arg> to the CUDA/HIP host compilation
Pass <arg> to the assembler
Pass <arg> to the clang compiler
Pass <arg> to fatbinary invocation
Pass <arg> to the ptxas assembler
Pass <arg> to the linker
Pass <arg> to the target offloading toolchain identified by
<triple>.
Pass <arg> to the target offloading toolchain.
Pass <arg> to the preprocessor
Treat subsequent input files as having type <language>
Pass -z <arg> to the linker

Appendix C

7.1 HIP FAQ

You can access the HIP FAQ at:

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

Chapter 7

Appendix C 103

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

	AMD ROCm™
	HIP Programming Guide
	Chapter 1 Introduction
	1.1 Features
	1.2 Accessing HIP
	1.2.1 Release Tagging

	1.3 HIP Portability and Compiler Technology

	Chapter 2 Installing HIP
	2.1 Installing Pre-built Packages
	2.2 Prerequisites
	2.3 AMD Platform
	2.4 NVIDIA Platform
	2.5 Default paths and environment variables
	2.6 Building HIP from Source
	2.6.1 Build ROCclr
	2.6.2 Build HIP
	2.6.3 Default paths and environment variables

	2.7 Verifying HIP Installation

	Chapter 3 Programming with HIP
	3.1 HIP Terminology
	3.2 Getting Started with HIP API
	3.2.1 HIP API Overview
	3.2.2 HIP API Examples
	3.2.2.1 Example 1
	3.2.2.2 Example 2

	3.3 Introduction to Memory Allocation
	3.3.1 Host Memory
	3.3.2 Memory allocation flags
	3.3.3 Coherency Controls
	3.3.4 Visibility of Zero-Copy Host Memory
	3.3.4.1 hipEventSynchronize
	3.3.4.2 Device-Side Malloc
	3.3.4.3 Use of Long Double Type
	3.3.4.4 FMA and Contractions

	3.4 HIP Kernel Language
	3.4.1 Function-Type Qualifiers
	3.4.1.1 __device__
	3.4.1.2 __global__
	3.4.1.3 __host__
	3.4.1.4 Calling __global__ Functions
	3.4.1.5 Kernel-Launch Example

	3.4.2 Variable-Type Qualifiers
	3.4.2.1 __constant__
	3.4.2.2 __shared__
	3.4.2.3 __managed__
	3.4.2.4 __restrict__

	3.4.3 Built-In Variables
	3.4.3.1 Coordinate Built-Ins
	3.4.3.2 warpSize

	3.4.4 Vector Types
	3.4.4.1 Short Vector Types
	3.4.4.2 dim3

	3.4.5 Memory-Fence Instructions
	3.4.6 Synchronization Functions
	3.4.7 Math Functions
	3.4.7.1 Single Precision Mathematical Functions
	3.4.7.2 Double Precision Mathematical Functions
	3.4.7.3 Integer Intrinsics
	3.4.7.4 Floating-point Intrinsics
	3.4.7.5 Texture Functions
	3.4.7.6 Surface Functions
	3.4.7.7 Timer Functions
	3.4.7.8 Atomic Functions
	3.4.7.9 Warp Cross-Lane Functions
	3.4.7.10 Warp Vote and Ballot Functions
	3.4.7.11 Warp Shuffle Functions
	3.4.7.12 Cooperative Groups Functions
	3.4.7.13 Warp Matrix Functions
	3.4.7.14 Independent Thread Scheduling
	3.4.7.15 Profiler Counter Function
	3.4.7.16 Assert
	3.4.7.17 Printf

	3.4.8 Device-Side Dynamic Global Memory Allocation
	3.4.9 __launch_bounds__
	3.4.9.1 Compiler Impact
	3.4.9.2 CU and EU Definitions
	3.4.9.3 Porting from CUDA __launch_bounds
	3.4.9.4 Maxregcount

	3.4.10 Register Keyword
	3.4.11 Pragma Unroll
	3.4.12 In-Line Assembly
	3.4.13 C++ Support
	3.4.14 Kernel Compilation
	3.4.15 gfx-arch-specific-kernel

	3.5 HIP Logging
	3.5.1 HIP Logging Level
	3.5.2 HIP Logging Mask
	3.5.3 HIP Logging Command
	3.5.4 HIP Logging Example
	3.5.5 HIP Logging Tips

	Chapter 4 Transiting from CUDA to HIP
	4.1 Transition Tool: HIPIFY
	4.1.1 Sample and Practice

	4.2 HIP Porting Process
	4.2.1 Porting a New CUDA Project
	4.2.1.1 General Tips
	4.2.1.2 Scanning existing CUDA code to scope the porting effort
	4.2.1.3 Converting a project in-place
	4.2.1.4 Library Equivalents

	4.2.2 Distinguishing Compiler Modes
	4.2.2.1 Identifying HIP Target Platform
	4.2.2.2 Identifying the Compiler: HIP-Clang or NVCC
	4.2.2.3 Identifying Current Compilation Pass: Host or Device

	4.2.3 Compiler Defines: Summary

	4.3 Identifying Architecture Features
	4.3.1 HIP_ARCH Defines
	4.3.2 Device-Architecture Properties
	4.3.3 Table of Architecture Properties
	4.3.4 Finding HIP
	4.3.5 Identifying HIP Runtime
	4.3.6 hipLaunchKernel
	4.3.7 Compiler Options
	4.3.7.1 Compiler Options Supported on AMD Platforms
	4.3.7.2 Option for specifying GPU processor

	4.3.8 Linking Issues
	4.3.8.1 Linking with hipcc

	4.4 Linking Code with Other Compilers
	4.4.1 libc++ and libstdc++
	4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)
	4.4.3 Using a Standard C++ Compiler
	4.4.3.1 cuda.h

	4.4.4 Choosing HIP File Extensions

	4.5 Workarounds
	4.5.1 memcpyToSymbol
	4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE
	4.5.3 threadfence_system
	4.5.4 Textures and Cache Control

	4.6 More Tips
	4.6.1 HIP Logging
	4.6.2 Debugging hipcc
	4.6.3 Editor Highlighting

	4.7 HIP Porting Driver API
	4.7.1 Porting CUDA Driver API
	4.7.2 cuModule API
	4.7.3 cuCtx API
	4.7.4 HIP Module and Ctx APIs
	4.7.4.1 hipModule API

	4.7.5 hipCtx API
	4.7.6 hipify translation of CUDA Driver API

	4.8 HIP-Clang Implementation Notes
	4.8.1 .hip_fatbin
	4.8.2 Initialization and Termination Functions
	4.8.3 Kernel Launching
	4.8.4 Address Spaces
	4.8.5 Using hipModuleLaunchKernel
	4.8.6 Additional Information

	4.9 NVCC Implementation Notes
	4.9.1 Interoperation between HIP and CUDA Driver
	4.9.2 Compilation Options
	4.9.3 HIP Module and Texture Driver API

	Chapter 5 Appendix A – HIP API
	5.1 HIP API Guide
	5.2 Supported CUDA APIs
	5.3 Deprecated HIP APIs
	5.3.1 HIP Context Management APIs
	5.3.2 HIP Memory Management APIs
	5.3.2.1 hipMallocHost
	5.3.2.2 hipMemAllocHost
	5.3.2.3 hipHostAlloc
	5.3.2.4 hipFreeHost

	5.4 Supported HIP Math APIs

	Chapter 6 Appendix B – Supported Clang Options
	6.1 Supported Clang Options

	Chapter 7 Appendix C
	7.1 HIP FAQ

