

[AMD Public Use]

AMD ROCm™

HIP Programming Guide

 Publication # 1.0 Revision: 0323
 Issue Date: March 2021

© 2021-22 Advanced Micro Devices, Inc. All Rights Reserved.

[AMD Public Use]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.
(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the
Specification as part of your performance of work for another party, you acknowledge that you have authority to bind
such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise
use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this
Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification. In consideration of Your use or access
of the Specification (in whole or in part), the receipt and sufficiency of which are acknowledged, You agree as
follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,
service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set
forth in the Specification and (b) to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This
Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual property
rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any notices from the
Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your rights under this
Agreement, to anyone else.
3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary
information. Additionally, AMD reserves the right to discontinue or make changes to the Specification and its
products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY
OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING
OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL,
SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF
GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING
NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems
intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other
application in which the failure of AMD’s product could create a situation where personal injury, death, or severe
property or environmental damage may occur.
5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the
Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or
obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You
agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any
product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD any
Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property
claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual
property incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to
or otherwise provided to any third party.
6. You shall adhere to all applicable U.S. import/export laws and regulations, as well as the import/export control laws
and regulations of other countries as applicable. You further agree to not export, re-export, or transfer, directly or
indirectly, any product, technical data, software or source code received from AMD under this license, or the direct
product of such technical data or software to any country for which the United States or any other applicable
government requires an export license or other governmental approval without first obtaining such licenses or
approvals; or in violation of any applicable laws or regulations of the United States or the country where the technical
data or software was obtained. You acknowledge the technical data and software received will not, in the absence of
authorization from U.S. or local law and regulations as applicable, be used by or exported, re-exported or transferred
to: (i) any sanctioned or embargoed country, or to nationals or residents of such countries; (ii) any restricted end-user
as identified on any applicable government end-user list; or (iii) any party where the end-use involves nuclear,
chemical/biological weapons, rocket systems, or unmanned air vehicles. For the most current Country Group listings,

1.0 Rev. 0323 March 2021 HIP Programming Guide

[AMD Public Use]

or for additional information about the EAR or Your obligations under those regulations, please refer to the U.S.
Bureau of Industry and Security’s website at http://www.bis.doc.gov/.
7. The Software and related documentation are “commercial items”, as that term is defined at 48 C.F.R. §2.101,
consisting of “commercial computer software” and “commercial computer software documentation”, as such terms are
used in 48 C.F.R. §12.212 and 48 C.F.R. §227.7202, respectively. Consistent with 48 C.F.R. §12.212 or 48 C.F.R.
§227.7202-1 through 227.7202-4, as applicable, the commercial computer software and commercial computer
software documentation are being licensed to U.S. Government end users (a) only as commercial items and (b) with
only those rights as are granted to all other end users pursuant to the terms and conditions set forth in this Agreement.
Unpublished rights are reserved under the copyright laws of the United States.
8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.
Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,
California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of this
agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the
remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take action
against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement
of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You
and AMD concerning the Specification; it may be changed only by a written document signed by both You and an
authorized representative of AMD.
DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. In addition, any stated support is
planned and is also subject to change. While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no
liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any
intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth
in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

* AMD®, the AMD Arrow logo, AMD Instinct™, Radeon™, ROCm® and combinations
* thereof are trademarks of Advanced Micro Devices, Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
* PCIe® is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and
may be trademarks of their respective companies.

http://www.bis.doc.gov/

[AMD Public Use]

[This page left blank intentionally]

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Table of Contents 5

[AMD Public Use]

Table of Contents
Table of Contents ... 5

Chapter 1 Introduction .. 9

1.1 Features .. 9

1.2 Accessing HIP .. 9

1.2.1 Release Tagging ... 10

1.3 HIP Portability and Compiler Technology .. 10

Chapter 2 Installing HIP ... 11

2.1 Installing Pre-built Packages ... 11

2.2 Prerequisites ... 11

2.3 AMD Platform ... 11

2.4 NVIDIA Platform .. 11

2.5 Default paths and environment variables ... 11

2.6 Building HIP from Source ... 12

2.6.1 Build ROCclr ... 12

2.6.2 Build HIP ... 12

2.6.3 Default paths and environment variables ... 12

2.7 Verifying HIP Installation ... 13

Chapter 3 Programming with HIP ... 14

3.1 HIP Terminology ... 14

3.2 Getting Started with HIP API .. 15

3.2.1 HIP API Overview ... 15

3.2.2 HIP API Examples ... 15

3.3 Introduction to Memory Allocation ... 16

3.3.1 Host Memory ... 16

3.3.2 Memory allocation flags .. 16

3.3.3 Coherency Controls ... 16

3.3.4 Visibility of Zero-Copy Host Memory .. 17

3.4 HIP Kernel Language .. 20

3.4.1 Function-Type Qualifiers ... 20

3.4.2 Variable-Type Qualifiers ... 22

HIP Programming Guide 1.0 Rev. 0323 March 2021

6 Table of Contents

3.4.3 Built-In Variables .. 23

3.4.4 Vector Types ... 24

3.4.5 Memory-Fence Instructions .. 25

3.4.6 Synchronization Functions .. 25

3.4.7 Math Functions .. 25

3.4.8 Device-Side Dynamic Global Memory Allocation ... 48

3.4.9 __launch_bounds__ ... 49

3.4.10 Register Keyword .. 51

3.4.11 Pragma Unroll ... 51

3.4.12 In-Line Assembly .. 51

3.4.13 C++ Support .. 52

3.4.14 Kernel Compilation ... 52

3.4.15 gfx-arch-specific-kernel .. 52

3.5 ROCm Code Object Tooling ... 52

3.5.1 Uniform Resource Identifier Syntax ... 52

3.5.2 List Available ROCm Code Objects ... 53

3.5.3 ROCm Code Objects Extraction ... 53

3.5.4 ROCm Code Object Tooling Examples .. 54

3.6 HIP Logging .. 54

3.6.1 HIP Logging Level .. 55

3.6.2 HIP Logging Mask .. 55

3.6.3 HIP Logging Command .. 56

3.6.4 HIP Logging Example ... 56

3.6.5 HIP Logging Tips .. 58

Chapter 4 Transiting from CUDA to HIP .. 59

4.1 Transition Tool: HIPIFY ... 59

4.1.1 Sample and Practice .. 59

4.2 HIP Porting Process .. 60

4.2.1 Porting a New CUDA Project ... 60

4.2.2 Distinguishing Compiler Modes ... 62

4.2.3 Compiler Defines: Summary ... 63

4.3 Identifying Architecture Features.. 64

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Table of Contents 7

[AMD Public Use]

4.3.1 HIP_ARCH Defines... 64

4.3.2 Device-Architecture Properties .. 64

4.3.3 Table of Architecture Properties .. 65

4.3.4 Finding HIP .. 66

4.3.5 Identifying HIP Runtime.. 66

4.3.6 hipLaunchKernel.. 66

4.3.7 Compiler Options ... 67

4.3.8 Linking Issues .. 68

4.4 Linking Code with Other Compilers ... 68

4.4.1 libc++ and libstdc++ .. 68

4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h) ... 69

4.4.3 Using a Standard C++ Compiler .. 69

4.4.4 Choosing HIP File Extensions ... 70

4.5 Workarounds .. 71

4.5.1 memcpyToSymbol ... 71

4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE ... 72

4.5.3 threadfence_system .. 72

4.5.4 Textures and Cache Control... 72

4.6 More Tips ... 73

4.6.1 HIP Logging... 73

4.6.2 Debugging hipcc .. 73

4.6.3 Editor Highlighting .. 73

4.7 HIP Porting Driver API ... 73

4.7.1 Porting CUDA Driver API... 73

4.7.2 cuModule API .. 74

4.7.3 cuCtx API... 74

4.7.4 HIP Module and Ctx APIs ... 75

4.7.5 hipCtx API ... 75

4.7.6 hipify translation of CUDA Driver API... 75

4.8 HIP-Clang Implementation Notes ... 76

4.8.1 .hip_fatbin .. 76

4.8.2 Initialization and Termination Functions ... 76

HIP Programming Guide 1.0 Rev. 0323 March 2021

8 Table of Contents

4.8.3 Kernel Launching .. 76

4.8.4 Address Spaces .. 77

4.8.5 Using hipModuleLaunchKernel .. 77

4.8.6 Additional Information .. 77

4.9 NVCC Implementation Notes ... 77

4.9.1 Interoperation between HIP and CUDA Driver .. 77

4.9.2 Compilation Options ... 77

4.9.3 HIP Module and Texture Driver API .. 79

Chapter 5 Appendix A – HIP API ... 81

5.1 HIP API Guide .. 81

5.2 HIP-Supported CUDA API Reference Guide ... 81

5.3 Deprecated HIP APIs .. 81

5.3.1 HIP Context Management APIs .. 81

5.3.2 HIP Memory Management APIs ... 82

5.4 Supported HIP Math APIs .. 82

Chapter 6 Appendix B – Supported Clang Options ... 83

6.1 Supported Clang Options .. 83

Chapter 7 Appendix C .. 104

7.1 HIP FAQ ... 104

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 1 Introduction 9

[AMD Public Use]

Chapter 1 Introduction

HIP is a C++ Runtime API and kernel language that allows developers to create portable
applications for AMD and NVIDIA GPUs from a single source code.

1.1 Features
The key features include:

• HIP has little or no performance impact over coding directly in CUDA mode.

• HIP allows coding in a single-source C++ programming language, including features such

as templates, C++11 lambdas, classes, and namespaces

• HIP allows developers to use the development environment and tools on each target

platform.

• The HIPIFY tools automatically convert sources from CUDA to HIP.

• Developers can specialize in the platform (CUDA or AMD) to tune for performance.

New projects can be developed directly in the portable HIP C++ language and can run on either
NVIDIA or AMD platforms. Additionally, HIP provides porting tools, which make it easy to port
existing CUDA codes to the HIP layer, with no loss of performance as compared to the original
CUDA application.

Thus, the HIP source code can be compiled to run on either platform. Platform-specific features
can be isolated to a specific platform using conditional compilation.

NOTE: HIP is not intended to be a drop-in replacement for CUDA, and developers should expect
to do some manual coding and performance tuning work to complete the port.

1.2 Accessing HIP
HIP is open source in GitHub and the repository maintains the following branches.

• Main branch: This is the stable branch and is up to date with the latest release branch. For

example, if the latest HIP release is rocm-4.1.x, the main repository is based on this

release.

• Release branch: The release branch corresponds to each ROCM release listed with release

tags, such as rocm-4.0.x, rocm-4.1.x, and others.

For more information, refer to https://github.com/ROCm-Developer-Tools/HIP

https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md
https://github.com/ROCm-Developer-Tools/HIP

HIP Programming Guide 1.0 Rev. 0323 March 2021

10 Introduction Chapter 1

1.2.1 Release Tagging

HIP releases consist of naming conventions for each ROCM release to help differentiate them. For
example, rocm x.yy, where x.yy reflects the ROCm release number.

1.3 HIP Portability and Compiler Technology
HIP C++ code can be compiled with either AMD or NVIDIA GPUs. On the AMD ROCm
platform, HIP provides a header and runtime library built on top of the HIP-Clang compiler. The
HIP runtime implements HIP streams, events, and memory APIs, and is an object library that is
linked with the application.

On the NVIDIA CUDA platform, HIP provides a header file, which translates from the HIP
runtime APIs to CUDA runtime APIs. The header file contains mostly inline functions and, thus,
has a very low overhead developers coding in HIP should expect the same performance as coding
in native CUDA. The code is then compiled with nvcc, the standard C++ compiler provided with
the CUDA SDK. Developers can use any tools supported by the CUDA SDK including the CUDA
profiler and debugger.

Thus, HIP provides source portability to either platform. HIP provides the hipcc compiler driver
which will call the appropriate toolchain depending on the desired platform. The source code for
all headers and the library implementation is available on GitHub.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 2 Installing HIP 11

[AMD Public Use]

Chapter 2 Installing HIP

2.1 Installing Pre-built Packages
You can install HIP with the package manager and the pre-built binary packages for your
platform.

2.2 Prerequisites
You can develop HIP code on the AMD ROCm platform using the HIP-Clang compiler and on a
CUDA platform with nvcc.

2.3 AMD Platform
HIP is installed with the ROCm driver package. For more information on HIP installation
instructions, refer to the ROCm Installation Guide at

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

Note, HIP-Clang is the compiler for compiling HIP programs on the AMD platform.

2.4 NVIDIA Platform
HIP-nvcc is the compiler for HIP program compilation on the NVIDIA platform.

• Add the ROCm package server to your system as per the OS-specific guide available here.

• Install the "hip-nvcc" package. This will install CUDA SDK and the HIP porting layer.

apt-get install hip-nvcc

2.5 Default paths and environment variables
• By default, HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting

CUDA_PATH env variable).

• By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH

environment variable).

• Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories

HIP Programming Guide 1.0 Rev. 0323 March 2021

12 Installing HIP Chapter 2

2.6 Building HIP from Source
2.6.1 Build ROCclr

ROCclr is defined on AMD platform that HIP use Radeon Open Compute Common Language
Runtime (ROCclr), which is a virtual device interface that HIP runtimes interact with different
backends.

For more information, see https://github.com/ROCm-Developer-Tools/ROCclr

git clone -b rocm-4.1.x https://github.com/ROCm-Developer-Tools/ROCclr.git
export ROCclr_DIR="$(readlink -f ROCclr)"
git clone -b rocm-4.1.x https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime.git
export OPENCL_DIR="$(readlink -f ROCm-OpenCL-Runtime)"
cd "$ROCclr_DIR"
mkdir -p build;cd build
cmake -DOPENCL_DIR="$OPENCL_DIR" -DCMAKE_INSTALL_PREFIX=/opt/rocm/rocclr ..
make -j
sudo make install

2.6.2 Build HIP

git clone -b rocm-4.1.x https://github.com/ROCm-Developer-Tools/HIP.git
export HIP_DIR="$(readlink -f HIP)"
cd "$HIP_DIR"
mkdir -p build; cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH="$ROCclr_DIR/build;/opt/rocm/" -
DCMAKE_INSTALL_PREFIX=</where/to/install/hip> ..
make -j
sudo make install

2.6.3 Default paths and environment variables

• By default, HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH

environment variable).

• By default, HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH

environment variable).

• By default, HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting

HIP_CLANG_PATH environment variable)

• By default, HIP looks for device library in /opt/rocm/lib (can be overridden by setting

DEVICE_LIB_PATH environment variable).

• Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

• Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation.

After installation, ensure HIP_PATH points to /where/to/install/hip.

https://github.com/ROCm-Developer-Tools/ROCclr

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 2 Installing HIP 13

[AMD Public Use]

2.7 Verifying HIP Installation
1. Run hipconfig. Note, the instructions below assume a default installation path):

/opt/rocm/bin/hipconfig --full

2. Compile and run the square sample from:
https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

HIP Programming Guide 1.0 Rev. 0323 March 2021

14 Programming with HIP Chapter 3

Chapter 3 Programming with HIP

3.1 HIP Terminology
Term Description

host, host cpu Executes the HIP runtime API and is capable of initiating kernel launches to one or more
devices.

default device Each host thread maintains a "default device". Most HIP runtime APIs (including
memory allocation, copy commands, kernel launches) do not use accept an explicit
device argument but instead implicitly use the default device. The default device can be
set with hipSetDevice.

active host thread Thread running the HIP APIs.

HIP-Clang Heterogeneous AMDGPU Compiler, with its capability to compile HIP programs on the
AMD platform. https://github.com/RadeonOpenCompute/llvm-project

hipify tools Tools to convert CUDA code to portable C++ code (https://github.com/ROCm-
Developer-Tools/HIPIFY).

ROCclr A virtual device interface that computes runtimes interact with different backends such as
ROCr on Linux or PAL on Windows. The ROCclr is an abstraction layer allowing
runtimes to work on both OSes without much effort.

For more information, see

https://github.com/ROCm-Developer-Tools/ROCclr

hipconfig Tool to report various configuration properties of the target platform.

nvcc nvcc compiler

https://github.com/RadeonOpenCompute/llvm-project
https://github.com/ROCm-Developer-Tools/ROCclr

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 15

[AMD Public Use]

3.2 Getting Started with HIP API
3.2.1 HIP API Overview

The HIP API includes functions such as hipMalloc, hipMemcpy, and hipFree. Programmers
familiar with CUDA will also be able to quickly learn and start coding with the HIP API.
Compute kernels are launched with the ‘hipLaunchKernel’s macro call.

For more information, refer to the HIP API Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.1.pdf

3.2.2 HIP API Examples

3.2.2.1 Example 1

Here is an example showing a snippet of the HIP API code:

hipMalloc(&A_d, Nbytes));
hipMalloc(&C_d, Nbytes));
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);
const unsigned blocks = 512;
const unsigned threadsPerBlock = 256;
hipLaunchKernel(vector_square, /* compute kernel*/
 dim3(blocks), dim3(threadsPerBlock), 0/*dynamic shared*/, 0/*stream*/,
/* launch config*/
 C_d, A_d, N); /* arguments to the compute kernel */
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

The HIP kernel language defines builtins for determining grid and block coordinates, math
functions, short vectors, atomics, and timer functions. It also specifies additional defines and
keywords for function types, address spaces, and optimization controls. For a detailed description,
see Section 3.4 in this document.

3.2.2.2 Example 2

Here’s an example of defining a simple ‘vector_square’ kernel.

template <typename T>
__global__ void
vector_square(T *C_d, const T *A_d, size_t N)
{
 size_t offset = (blockIdx.x * blockDim.x + threadIdx.x);
 size_t stride = blockDim.x * gridDim.x;
 for (size_t i=offset; i<N; i+=stride) {
 C_d[i] = A_d[i] * A_d[i];
 }
}

The HIP Runtime API code and compute kernel definition can exist in the same source file - HIP
takes care of generating host and device code appropriately.

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.1.pdf

HIP Programming Guide 1.0 Rev. 0323 March 2021

16 Programming with HIP Chapter 3

3.2.2.3 More HIP Examples

For more examples to learn and use HIP, see

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples

3.3 Introduction to Memory Allocation
3.3.1 Host Memory

hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs
in the system. There are two use cases for this host memory:

• Faster HostToDevice and DeviceToHost Data Transfers: The runtime tracks the

hipHostMalloc allocations and can avoid some of the setup required for regular unpinned

memory. For exact measurements on a specific system, experiment with --unpinned and -

-pinned switches for the hipBusBandwidth tool.

• Zero-Copy GPU Access: GPU can directly access the host memory over the CPU/GPU

interconnect, without need to copy the data. This avoids the need for the copy, but during

the kernel access each memory access must traverse the interconnect, which can be tens

of times slower than accessing the GPU's local device memory. Zero-copy memory can be

a good choice when the memory accesses are infrequent (perhaps only once). Zero-copy

memory is typically "Coherent" and thus not cached by the GPU but this can be overridden

if desired and is explained in more detail below.

3.3.2 Memory allocation flags

hipHostMalloc always sets the hipHostMallocPortable and hipHostMallocMapped flags. Both
usage models described above use the same allocation flags, and the difference is in how the
surrounding code uses the host memory. See the hipHostMalloc API for more information.

3.3.3 Coherency Controls

ROCm defines two coherency options for host memory:

• Coherent memory: Supports fine-grain synchronization while the kernel is running. For

example, a kernel can perform atomic operations that are visible to the host CPU or to

other (peer) GPUs. Synchronization instructions include threadfence_system and C++11-

style atomic operations. However, coherent memory cannot be cached by the GPU and

thus may have lower performance.

• Non-coherent memory: Can be cached by GPU, but cannot support synchronization while

the kernel is running. Non-coherent memory can be optionally synchronized only at

command (end-of-kernel or copy command) boundaries. This memory is appropriate for

high-performance access when fine-grain synchronization is not required.

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 17

[AMD Public Use]

HIP provides the developer with controls to select which type of memory is used via allocation
flags passed to hipHostMalloc and the HIP_HOST_COHERENT environment variable:

• hipHostMallocCoherent=0, hipHostMallocNonCoherent=0: Use HIP_HOST_COHERENT

environment variable:

o If HIP_HOST_COHERENT is 1 or undefined, the host memory allocation is

coherent.

o If HIP_HOST_COHERENT is defined and 0: the host memory allocation is non-

coherent.

• hipHostMallocCoherent=1, hipHostMallocNonCoherent=0: The host memory allocation will

be coherent. HIP_HOST_COHERENT env variable is ignored.

• hipHostMallocCoherent=0, hipHostMallocNonCoherent=1: The host memory allocation will

be non-coherent. HIP_HOST_COHERENT env variable is ignored.

• hipHostMallocCoherent=1, hipHostMallocNonCoherent=1: Illegal.

3.3.4 Visibility of Zero-Copy Host Memory

The coherent and non-coherent host memory visibility is described in the table below. Note, the
coherent host memory is automatically visible at synchronization points.

HIP API Synchronization
Effect

Fence Coherent Host
Memory
Visibility

Non-Coherent
Host Memory
Visibility

hipStreamSynchronize host waits for all
commands in the
specified stream to
complete

system-scope
release

yes yes

hipDeviceSynchronize host waits for all
commands in all
streams on the
specified device to
complete

system-scope
release

yes yes

hipEventSynchronize host waits for the
specified event to
complete

device-scope
release

yes depends - see the
description below

hipStreamWaitEvent stream waits for the
specified event to
complete

none yes no

HIP Programming Guide 1.0 Rev. 0323 March 2021

18 Programming with HIP Chapter 3

3.3.4.1 hipEventSynchronize

Developers can control the release scope for hipEvents. By default, the GPU performs a device-
scope acquire and release operation with each recorded event. This will make host and device
memory visible to other commands executing on the same device.

A stronger system-level fence can be specified when the event is created with
hipEventCreateWithFlags.

hipEventReleaseToSystem: Perform a system-scope release operation when the event is
recorded. This will make both Coherent and Non-Coherent host memory visible to other agents in
the system but may involve heavyweight operations such as cache flushing. Coherent memory
will typically use lighter-weight in-kernel synchronization mechanisms, such as an atomic
operation, and, thus, do not need to use hipEventReleaseToSystem.

hipEventDisableTiming: Events created with this flag do not record profiling data, thus,
providing optimal performance if used for synchronization.

Summary and Recommendations

• Coherent host memory is the default and is the easiest to use since the memory is visible

to the CPU at typical synchronization points. This memory allows in-kernel

synchronization commands such as threadfence_system to work transparently.

• HIP/ROCm also supports the ability to cache host memory in the GPU using the "Non-

Coherent" host memory allocations. This can provide a performance benefit, but care must

be taken to use the correct synchronization.

3.3.4.2 Device-Side Malloc

HIP-Clang currently does not support device-side malloc and free.

3.3.4.3 Use of Long Double Type

In HIP-Clang, the long double type is an 80-bit extended precision format for x86_64, which is
not supported by AMDGPU. HIP-Clang treats long double type as IEEE double type for
AMDGPU. Using long double type in HIP source code will not cause an issue as long as data of
long double type is not transferred between host and device. However, the long double type should
not be used as kernel argument type.

3.3.4.4 FMA and Contractions

By default, HIP-Clang assumes -ffp-contract=fast. For x86_64, FMA is off by default since the
generic x86_64 target does not support FMA by default. To turn on FMA on x86_64, either use -
mfma or -march=native on CPU's supporting FMA.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 19

[AMD Public Use]

When contractions are enabled and the CPU has not enabled FMA instructions, the GPU can
produce different numerical results than the CPU for expressions that can be contracted.

3.3.4.5 Creating Static Libraries

You can create the following types of static libraries with HIP-Clang:

• Static libraries that do not export device functions, and, therefore, can only be launched

through host functions within the same library. The advantage of this type of library is that

it can be linked with a non-hipcc compiler such as GCC.

These libraries contain host objects with the device code embedded as fat binaries. It can

only be generated using the flag --emit-static-lib.

For example,

hipcc hipOptLibrary.cpp --emit-static-lib -fPIC -o libHipOptLibrary.a

• Static libraries that export device functions within the library to be linked by other code

objects or libraries. However, this requires using hipcc as the linker. These libraries

contain relocatable device objects and are created using ar.

For example,

hipcc hipDevice.cpp -c -fgpu-rdc -o hipDevice.o
ar rcsD libHipDevice.a hipDevice.o

For more information, see samples/2_Cookbook/15_static_lib

HIP Programming Guide 1.0 Rev. 0323 March 2021

20 Programming with HIP Chapter 3

3.4 HIP Kernel Language
HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in
compute kernels, including classes, namespaces, operator overloading, templates, and more.
Additionally, it defines other language features designed specifically to target accelerators, such as
the following:

• A kernel-launch syntax that uses standard C++, resembles a function call, and is portable

to all HIP targets

• Short-vector headers that can serve on a host or a device

• Math functions resembling those in the "math.h" header included with standard C++

compilers

• Built-in functions for accessing specific GPU hardware capabilities

This section describes the built-in variables and functions accessible from the HIP kernel. It’s
intended for readers who are familiar with CUDA kernel syntax and want to understand how HIP
is different.

The features are marked with one of the following keywords:

• Supported - HIP supports the feature with a CUDA-equivalent function

• Not supported - HIP does not support the feature

• Under development - the feature is under development but not yet available

3.4.1 Function-Type Qualifiers

3.4.1.1 __device__

The supported __device__ functions are:

• Executed on the device

• Called from the device only

The __device__ keyword can combine with the host keyword (see host).

3.4.1.2 __global__

The supported __global__ functions are:

• Executed on the device

• Called ("launched") from the host

HIP __global__ functions must have a void return type. See the Kernel Launch example for more
information.

HIP lacks dynamic-parallelism support, so __global__ functions cannot be called from the device.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 21

[AMD Public Use]

3.4.1.3 __host__

The supported __host__ functions are:

• Executed on the host

• Called from the host

__host__ can combine with __device__, in which case the function compiles for both the host and
device. These functions cannot use the HIP grid coordinate functions. For example,
"hipThreadIdx_x". A possible workaround is to pass the necessary coordinate info as an argument
to the function. _host__ cannot combine with __global__.

HIP parses the __noinline__ and __forceinline__ keywords and converts them to the appropriate
Clang attributes.

3.4.1.4 Calling __global__ Functions

__global__ functions are often referred to as kernels, and calling one is termed launching the
kernel. These functions require the caller to specify an "execution configuration" that includes the
grid and block dimensions. The execution configuration can also include other information for the
launch, such as the amount of additional shared memory to allocate and the stream where the
kernel should execute. HIP introduces a standard C++ calling convention to pass the execution
configuration to the kernel in addition to the Cuda <<< >>> syntax.

• In HIP, kernels launch with either the <<< >>> syntax or the "hipLaunchKernel" function.

• The first five parameters to hipLaunchKernel are the following:

o symbol kernelName: the name of the kernel to launch. To support template kernels

which contains "," use the HIP_KERNEL_NAME macro. The hipify tools insert this

automatically.

o dim3 gridDim: 3D-grid dimensions specifying the number of blocks to launch.

o dim3 blockDim: 3D-block dimensions specifying the number of threads in each block.

o size_t dynamicShared: amount of additional shared memory to allocate when launching

the kernel (see shared)

o hipStream_t: stream where the kernel should execute. A value of 0 corresponds to the

NULL stream (see Synchronization Functions).

• Kernel arguments must follow the five parameters

The hipLaunchKernel macro always starts with the five parameters specified above, followed by
the kernel arguments. HIPIFY tools optionally convert CUDA launch syntax to hipLaunchKernel,
including conversion of optional arguments in <<< >>> to the five required hipLaunchKernel
parameters. The dim3 constructor accepts zero to three arguments and will by default initialize
unspecified dimensions to 1. See dim3. The kernel uses the coordinate built-ins (hipThread*,
hipBlock*, hipGrid*) to determine coordinate index and coordinate bounds of the work item that’s
currently executing. For more information, see Coordinate Built-Ins.

HIP Programming Guide 1.0 Rev. 0323 March 2021

22 Programming with HIP Chapter 3

3.4.1.5 Kernel-Launch Example

// Example showing device function, __device__ __host__
// <- compile for both device and host
float PlusOne(float x)
{
 return x + 1.0;
}
__global__
void
MyKernel (const float *a, const float *b, float *c, unsigned N)
{
 unsigned gid = threadIdx.x; // <- coordinate index function
 if (gid < N) {
 c[gid] = a[gid] + PlusOne(b[gid]);
 }
}
void callMyKernel()
{
 float *a, *b, *c; // initialization not shown...
 unsigned N = 1000000;
 const unsigned blockSize = 256;
 MyKernel<<<dim3(gridDim), dim3(groupDim), 0, 0>>> (a,b,c,n);
 // Alternatively, kernel can be launched by
 // hipLaunchKernel(MyKernel, dim3(N/blockSize), dim3(blockSize), 0, 0, a,b,c,N);
}

3.4.2 Variable-Type Qualifiers

3.4.2.1 __constant__

The __constant__ keyword is supported. The host writes constant memory before launching the
kernel; from the GPU, this memory is read-only during kernel execution. The functions for
accessing constant memory (hipGetSymbolAddress(), hipGetSymbolSize(),
hipMemcpyToSymbol(), hipMemcpyToSymbolAsync(), hipMemcpyFromSymbol(),
hipMemcpyFromSymbolAsync()) are available.

3.4.2.2 __shared__

The __shared__ keyword is supported.

extern __shared__ allows the host to dynamically allocate shared memory and is specified as a
launch parameter. HIP uses an alternate syntax based on the HIP_DYNAMIC_SHARED macro.

3.4.2.3 __managed__

Managed memory, including the __managed__ keyword, are not supported in HIP.

3.4.2.4 __restrict__

The __restrict__ keyword tells the compiler that the associated memory pointer will not alias with
any other pointer in the kernel or function. This feature can help the compiler generate better code.
In most cases, all pointer arguments must use this keyword to realize the benefit.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 23

[AMD Public Use]

3.4.3 Built-In Variables

3.4.3.1 Coordinate Built-Ins

These built-ins determine the coordinate of the active work item in the execution grid. They are
defined in hip_runtime.h (rather than being implicitly defined by the compiler).

HIP Syntax CUDA Syntax

threadIdx.x threadIdx.x

threadIdx.y threadIdx.y

threadIdx.z threadIdx.z

blockIdx.x blockIdx.x

blockIdx.y blockIdx.y

blockIdx.z blockIdx.z

blockDim.x blockDim.x

blockDim.y blockDim.y

blockDim.z blockDim.z

gridDim.x gridDim.x

gridDim.y gridDim.y

gridDim.z gridDim.z

HIP Programming Guide 1.0 Rev. 0323 March 2021

24 Programming with HIP Chapter 3

3.4.3.2 warpSize

The warpSize variable is of type int and contains the warp size (in threads) for the target device.
Note that all current Nvidia devices return 32 for this variable, and all current AMD devices return
64. Device code should use the warpSize built-in to develop portable wave-aware code.

3.4.4 Vector Types

Note that these types are defined in hip_runtime.h and are not automatically provided by the
compiler.

3.4.4.1 Short Vector Types

Short vector types derive from the basic integer and floating-point types. They are structures
defined in hip_vector_types.h. The first, second, third, and fourth components of the vector are
accessible through the x, y, z, and w fields, respectively. All the short vector types support a
constructor function of the form make_<type_name>(). For example, float4 make_float4(float x,
float y, float z, float w) creates a vector of type float4 and value (x,y,z,w).

HIP supports the following short vector formats:

Signed Integers

• char1, char2, char3, char4

• short1, short2, short3, short4

• int1, int2, int3, int4

• long1, long2, long3, long4

• longlong1, longlong2, longlong3, longlong4

Unsigned Integers

• uchar1, uchar2, uchar3, uchar4

• ushort1, ushort2, ushort3, ushort4

• uint1, uint2, uint3, uint4

• ulong1, ulong2, ulong3, ulong4

• ulonglong1, ulonglong2, ulonglong3, ulonglong4

Floating Points

• float1, float2, float3, float4

• double1, double2, double3, double4

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 25

[AMD Public Use]

3.4.4.2 dim3

dim3 is a three-dimensional integer vector type commonly used to specify grid and group
dimensions. Unspecified dimensions are initialized to 1.

typedef struct dim3 {
 uint32_t x;
 uint32_t y;
 uint32_t z;
 dim3(uint32_t _x=1, uint32_t _y=1, uint32_t _z=1) : x(_x), y(_y), z(_z) {};
};

3.4.5 Memory-Fence Instructions

HIP supports __threadfence() and __threadfence_block().

HIP provides a workaround for threadfence_system() under the HIP-Clang path. To enable the
workaround, HIP should be built with environment variable HIP_COHERENT_HOST_ALLOC
enabled.

Also, the kernels that use __threadfence_system() should be modified as follows:

• The kernel should only operate on finegrained system memory; which should be allocated

with hipHostMalloc().

• Remove all memcpy for those allocated finegrained system memory regions.

3.4.6 Synchronization Functions

The __syncthreads() built-in function is supported in HIP. The __syncthreads_count(int),
__syncthreads_and(int) and __syncthreads_or(int) functions are under development.

3.4.7 Math Functions

HIP-Clang supports a set of math operations callable from the device.

3.4.7.1 Single Precision Mathematical Functions

Following is the list of supported single-precision mathematical functions.

Function Supported
on Host

Supported
on Device

float acosf (float x)

Calculate the arc cosine of the input argument.

 

float acoshf (float x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

26 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

float asinf (float x)

Calculate the arc sine of the input argument.

 

float asinhf (float x)

Calculate the arc hyperbolic sine of the input argument.

 

float atan2f (float y, float x)

Calculate the arc tangent of the ratio of first and second input arguments.

 

float atanf (float x)

Calculate the arc tangent of the input argument.

 

float atanhf (float x)

Calculate the arc hyperbolic tangent of the input argument.

 

float cbrtf (float x)

Calculate the cube root of the input argument.

 

float ceilf (float x)

Calculate ceiling of the input argument.

 

float copysignf (float x, float y)

Create value with given magnitude, copying sign of second value.

 

float cosf (float x)

Calculate the cosine of the input argument.

 

float coshf (float x)

Calculate the hyperbolic cosine of the input argument.

 

float erfcf (float x)

Calculate the complementary error function of the input argument.

 

float erff (float x)

Calculate the error function of the input argument.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 27

[AMD Public Use]

Function Supported
on Host

Supported
on Device

float exp10f (float x)

Calculate the base 10 exponential of the input argument.

 

float exp2f (float x)

Calculate the base 2 exponential of the input argument.

 

float expf (float x)

Calculate the base e exponential of the input argument.

 

float expm1f (float x)

Calculate the base e exponential of the input argument, minus 1.

 

float fabsf (float x)

Calculate the absolute value of its argument.

 

float fdimf (float x, float y)

Compute the positive difference between x and y.

 

float floorf (float x)

Calculate the largest integer less than or equal to x.

 

float fmaf (float x, float y, float z)

Compute x × y + z as a single operation.

 

float fmaxf (float x, float y)

Determine the maximum numeric value of the arguments.

 

float fminf (float x, float y)

Determine the minimum numeric value of the arguments.

 

float fmodf (float x, float y)

Calculate the floating-point remainder of x / y.

 

float frexpf (float x, int* nptr)

Extract mantissa and exponent of a floating-point value.

 x

HIP Programming Guide 1.0 Rev. 0323 March 2021

28 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

float hypotf (float x, float y)

Calculate the square root of the sum of squares of two arguments.

 

int ilogbf (float x)

Compute the unbiased integer exponent of the argument.

 

__RETURN_TYPE1 isfinite (float a)

Determine whether the argument is finite.

 

__RETURN_TYPE1 isinf (float a)

Determine whether the argument is infinite.

 

__RETURN_TYPE1 isnan (float a)

Determine whether the argument is a NaN.

 

float ldexpf (float x, int exp)

Calculate the value of x ⋅ 2exp.

 

float log10f (float x)

Calculate the base 10 logarithm of the input argument.

 

float log1pf (float x)

Calculate the value of loge(1 + x).

 

float logbf (float x)

Calculate the floating-point representation of the exponent of the input argument.

 

float log2f (float x)

Calculate the base 2 logarithm of the input argument.

 

float logf (float x)

Calculate the natural logarithm of the input argument.

 

float modff (float x, float* iptr)

Break down the input argument into fractional and integral parts.

 x

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 29

[AMD Public Use]

Function Supported
on Host

Supported
on Device

float nanf (const char* tagp)

Returns "Not a Number" value.

x 

float nearbyintf (float x)

Round the input argument to the nearest integer.

 

float powf (float x, float y)

Calculate the value of the first argument to the power of the second argument.

 

float remainderf (float x, float y)

Compute single-precision floating-point remainder.

 

float remquof (float x, float y, int* quo)

Compute single-precision floating-point remainder and part of quotient.

 x

float roundf (float x)

Round to nearest integer value in floating-point.

 

float scalbnf (float x, int n)

Scale floating-point input by an integer power of two.

 

__RETURN_TYPE1 signbit (float a)

Return the sign bit of the input.

 

void sincosf (float x, float* sptr, float* cptr)

Calculate the sine and cosine of the first input argument.

 x

float sinf (float x)

Calculate the sine of the input argument.

 

float sinhf (float x)

Calculate the hyperbolic sine of the input argument.

 

float sqrtf (float x)

Calculate the square root of the input argument.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

30 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

float tanf (float x)

Calculate the tangent of the input argument.

 

float tanhf (float x)

Calculate the hyperbolic tangent of the input argument.

 

float truncf (float x)

Truncate input argument to an integral part.

 

float tgammaf (float x)

Calculate the gamma function of the input argument.

 

float erfcinvf (float y)

Calculate the inverse complementary function of the input argument.

 

float erfcxf (float x)

Calculate the scaled complementary error function of the input argument.

 

float erfinvf (float y)

Calculate the inverse error function of the input argument.

 

float fdividef (float x, float y)

Divide two floating-point values.

 

float frexpf (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

 

float j0f (float x)

Calculate the value of the Bessel function of the first kind of order 0 for the input
argument.

 

float j1f (float x)

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

 

float jnf (int n, float x)
Calculate the value of the Bessel function of the first kind of order n for the input
argument.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 31

[AMD Public Use]

Function Supported
on Host

Supported
on Device

float lgammaf (float x)

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

 

long long int llrintf (float x)

Round input to nearest integer value.

 

long long int llroundf (float x)

Round to nearest integer value.

 

long int lrintf (float x)

Round input to the nearest integer value.

 

long int lroundf (float x)

Round to nearest integer value.

 

float modff (float x, float *iptr)

Break down the input argument into fractional and integral parts.

 

float nextafterf (float x, float y)

Returns next representable single-precision floating-point value after an argument.

 

float norm3df (float a, float b, float c)

Calculate the square root of the sum of squares of three coordinates of the
argument.

 

float norm4df (float a, float b, float c, float d)

Calculate the square root of the sum of squares of four coordinates of the
argument.

 

float normcdff (float y)

Calculate the standard normal cumulative distribution function.

 

float normcdfinvf (float y)

Calculate the inverse of the standard normal cumulative distribution function.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

32 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

float normf (int dim, const float *a)

Calculate the square root of the sum of squares of any number of coordinates.

 

float rcbrtf (float x)

Calculate the reciprocal cube root function.

 

float remquof (float x, float y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

 

float rhypotf (float x, float y)

Calculate one over the square root of the sum of squares of two arguments.

 

float rintf (float x)

Round input to nearest integer value in floating-point.

 

float rnorm3df (float a, float b, float c)

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

 

float rnorm4df (float a, float b, float c, float d)

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

 

float rnormf (int dim, const float *a)

Calculate the reciprocal of square root of the sum of squares of any number of
coordinates.

 

float scalblnf (float x, long int n)

Scale floating-point input by an integer power of two.

 

void sincosf (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument.

 

void sincospif (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 33

[AMD Public Use]

Function Supported
on Host

Supported
on Device

float y0f (float x)

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

 

float y1f (float x)

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

 

float ynf (int n, float x)

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

 

3.4.7.2 Double Precision Mathematical Functions

The following table consists of supported double-precision mathematical functions.

Function Supported
on Host

Supported
on Device

double acos (double x)

Calculate the arc cosine of the input argument.

 

double acosh (double x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

 

double asin (double x)

Calculate the arc sine of the input argument.

 

double asinh (double x)

Calculate the arc hyperbolic sine of the input argument.

 

double atan (double x)

Calculate the arc tangent of the input argument.

 

double atan2 (double y, double x)

Calculate the arc tangent of the ratio of first and second input arguments.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

34 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

double atanh (double x)

Calculate the arc hyperbolic tangent of the input argument.

 

double cbrt (double x)

Calculate the cube root of the input argument.

 

double ceil (double x)

Calculate ceiling of the input argument.

 

double copysign (double x, double y)

Create value with given magnitude, copying sign of second value.

 

double cos (double x)

Calculate the cosine of the input argument.

 

double cosh (double x)

Calculate the hyperbolic cosine of the input argument.

 

double erf (double x)

Calculate the error function of the input argument.

 

double erfc (double x)

Calculate the complementary error function of the input argument.

 

double exp (double x)

Calculate the base e exponential of the input argument.

 

double exp10 (double x)

Calculate the base 10 exponential of the input argument.

 

double exp2 (double x)

Calculate the base 2 exponential of the input argument.

 

double expm1 (double x)

Calculate the base e exponential of the input argument, minus 1.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 35

[AMD Public Use]

Function Supported
on Host

Supported
on Device

double fabs (double x)

Calculate the absolute value of the input argument.

 

double fdim (double x, double y)

Compute the positive difference between x and y.

 

double floor (double x)

Calculate the largest integer less than or equal to x.

 

double fma (double x, double y, double z)

Compute x × y + z as a single operation.

 

double fmax (double , double)

Determine the maximum numeric value of the arguments.

 

double fmin (double x, double y)

Determine the minimum numeric value of the arguments.

 

double fmod (double x, double y)

Calculate the floating-point remainder of x / y.

 

double frexp (double x, int* nptr)

Extract mantissa and exponent of a floating-point value.

 x

double hypot (double x, double y)

Calculate the square root of the sum of squares of two arguments.

 

int ilogb (double x)

Compute the unbiased integer exponent of the argument.

 

__RETURN_TYPE1 isfinite (double a)

Determine whether an argument is finite.

 

__RETURN_TYPE1 isinf (double a)

Determine whether an argument is infinite.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

36 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

__RETURN_TYPE1 isnan (double a)

Determine whether an argument is a NaN.

 

double ldexp (double x, int exp)

Calculate the value of x ⋅ 2exp.

 

double log (double x)

Calculate the base e logarithm of the input argument.

 

double log10 (double x)

Calculate the base 10 logarithm of the input argument.

 

double log1p (double x)

Calculate the value of loge(1 + x).

 

double log2 (double x)

Calculate the base 2 logarithm of the input argument.

 

double logb (double x)

Calculate the floating-point representation of the exponent of the input argument.

 

double modf (double x, double* iptr)

Break down the input argument into fractional and integral parts.

 x

double nan (const char* tagp)

Returns "Not a Number" value.

x 

double nearbyint (double x)

Round the input argument to the nearest integer.

 

double pow (double x, double y)

Calculate the value of the first argument to the power of the second argument.

 

double remainder (double x, double y)

Compute double-precision floating-point remainder.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 37

[AMD Public Use]

Function Supported
on Host

Supported
on Device

double remquo (double x, double y, int* quo)

Compute double-precision floating-point remainder and part of quotient.

 x

double round (double x)

Round to nearest integer value in floating-point.

 

double scalbn (double x, int n)

Scale floating-point input by an integer power of two.

 

__RETURN_TYPE1 signbit (double a)

Return the sign bit of the input.

 

double sin (double x)

Calculate the sine of the input argument.

 

void sincos (double x, double* sptr, double* cptr)

Calculate the sine and cosine of the first input argument.

 x

double sinh (double x)

Calculate the hyperbolic sine of the input argument.

 

double sqrt (double x)

Calculate the square root of the input argument.

 

double tan (double x)

Calculate the tangent of the input argument.

 

double tanh (double x)

Calculate the hyperbolic tangent of the input argument.

 

double tgamma (double x)

Calculate the gamma function of the input argument.

 

double trunc (double x)

Truncate input argument to an integral part.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

38 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

double erfcinv (double y)

Calculate the inverse complementary function of the input argument.

 

double erfcx (double x)

Calculate the scaled complementary error function of the input argument.

 

double erfinv (double y)

Calculate the inverse error function of the input argument.

 

double frexp (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

 

double j0 (double x)

Calculate the value of the Bessel function of the first kind of order 0 for the input
argument.

 

double j1 (double x)

Calculate the value of the Bessel function of the first kind of order 1 for the input
argument.

 

double jn (int n, double x)

Calculate the value of the Bessel function of the first kind of order n for the input
argument.

 

double lgamma (double x)

Calculate the natural logarithm of the absolute value of the gamma function of the
input argument.

 

long long int llrint (double x)

Round input to a nearest integer value.

 

long long int llround (double x)

Round to nearest integer value.

 

long int lrint (double x)

Round input to a nearest integer value.

 

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 39

[AMD Public Use]

Function Supported
on Host

Supported
on Device

long int lround (double x)

Round to nearest integer value.

 

double modf (double x, double *iptr)

Break down the input argument into fractional and integral parts.

 

double nextafter (double x, double y)

Returns next representable single-precision floating-point value after an argument.

 

double norm3d (double a, double b, double c)

Calculate the square root of the sum of squares of three coordinates of the
argument.

 

float norm4d (double a, double b, double c, double d)

Calculate the square root of the sum of squares of four coordinates of the
argument.

 

double normcdf (double y)

Calculate the standard normal cumulative distribution function.

 

double normcdfinv (double y)

Calculate the inverse of the standard normal cumulative distribution function.

 

double rcbrt (double x)

Calculate the reciprocal cube root function.

 

double remquo (double x, double y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

 

double rhypot (double x, double y)

Calculate one over the square root of the sum of squares of two arguments.

 

double rint (double x)

Round input to the nearest integer value in floating-point.

 

HIP Programming Guide 1.0 Rev. 0323 March 2021

40 Programming with HIP Chapter 3

Function Supported
on Host

Supported
on Device

double rnorm3d (double a, double b, double c)

Calculate one over the square root of the sum of squares of three coordinates of the
argument.

 

double rnorm4d (double a, double b, double c, double d)

Calculate one over the square root of the sum of squares of four coordinates of the
argument.

 

double rnorm (int dim, const double *a)

Calculate the reciprocal of the square root of the sum of squares of any number of
coordinates.

 

double scalbln (double x, long int n)

Scale floating-point input by an integer power of two.

 

void sincos (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument.

 

void sincospi (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

 

double y0f (double x)

Calculate the value of the Bessel function of the second kind of order 0 for the
input argument.

 

double y1 (double x)

Calculate the value of the Bessel function of the second kind of order 1 for the
input argument.

 

double yn (int n, double x)

Calculate the value of the Bessel function of the second kind of order n for the
input argument.

 

NOTE: [1] __RETURN_TYPE is dependent on the compiler. It is usually 'int' for C compilers and
'bool' for C++ compilers.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 41

[AMD Public Use]

3.4.7.3 Integer Intrinsics

The following table lists supported integer intrinsics. Note, intrinsics are supported on devices
only.

Function

unsigned int __brev (unsigned int x)

Reverse the bit order of a 32-bit unsigned integer.

unsigned long long int __brevll (unsigned long long int x)

Reverse the bit order of a 64-bit unsigned integer.

int __clz (int x)

Return the number of consecutive high-order zero bits in a 32-bit integer.

unsigned int __clz(unsigned int x)

Return the number of consecutive high-order zero bits in 32-bit unsigned integer.

int __clzll (long long int x)

Count the number of consecutive high-order zero bits in a 64-bit integer.

unsigned int __clzll(long long int x)

Return the number of consecutive high-order zero bits in 64-bit signed integer.

unsigned int __ffs(unsigned int x)

Find the position of least significant bit set to 1 in a 32-bit unsigned integer.1

unsigned int __ffs(int x)

Find the position of least significant bit set to 1 in a 32-bit signed integer.

unsigned int __ffsll(unsigned long long int x)

Find the position of least significant bit set to 1 in a 64-bit unsigned integer.1

unsigned int __ffsll(long long int x)

Find the position of least significant bit set to 1 in a 64 bit signed integer.

unsigned int __popc (unsigned int x)

Count the number of bits that are set to 1 in a 32-bit integer.

HIP Programming Guide 1.0 Rev. 0323 March 2021

42 Programming with HIP Chapter 3

Function

int __popcll (unsigned long long int x)

Count the number of bits that are set to 1 in a 64-bit integer.

int __mul24 (int x, int y)

Multiply two 24-bit integers.

unsigned int __umul24 (unsigned int x, unsigned int y)

Multiply two 24-bit unsigned integers.

NOTE: The HIP-Clang implementation of __ffs() and __ffsll() contains code to add a constant +1
to produce the ffs result format. For the cases where this overhead is not acceptable and the
programmer is willing to specialize for the platform, HIP-Clang provides
__lastbit_u32_u32(unsigned int input) and __lastbit_u32_u64(unsigned long long int input).

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 43

[AMD Public Use]

3.4.7.4 Floating-point Intrinsics

The following table provides a list of supported floating-point intrinsics. Note, intrinsics are
supported on devices only.

Function
float __cosf (float x)

Calculate the fast approximate cosine of the input argument.

float __expf (float x)

Calculate the fast approximate base e exponential of the input argument.
float __frsqrt_rn (float x)

Compute 1 / √x in round-to-nearest-even mode.

float __fsqrt_rd (float x)
Compute √x in round-down mode.

float __fsqrt_rn (float x)

Compute √x in round-to-nearest-even mode.
float __fsqrt_ru (float x)

Compute √x in round-up mode.

float __fsqrt_rz (float x)

Compute √x in round-towards-zero mode.
float __log10f (float x)

Calculate the fast approximate base 10 logarithm of the input argument.

float __log2f (float x)

Calculate the fast approximate base 2 logarithm of the input argument.

float __logf (float x)

Calculate the fast approximate base e logarithm of the input argument.

float __powf (float x, float y)

Calculate the fast approximate of xy.

float __sinf (float x)

Calculate the fast approximate sine of the input argument.

float __tanf (float x)

Calculate the fast approximate tangent of the input argument.

HIP Programming Guide 1.0 Rev. 0323 March 2021

44 Programming with HIP Chapter 3

Function

double __dsqrt_rd (double x)

Compute √x in round-down mode.

double __dsqrt_rn (double x)

Compute √x in round-to-nearest-even mode.

double __dsqrt_ru (double x)

Compute √x in round-up mode.

double __dsqrt_rz (double x)

Compute √x in round-towards-zero mode.

3.4.7.5 Texture Functions

Some Texture functions are supported.

3.4.7.6 Surface Functions

Surface functions are not supported.

3.4.7.7 Timer Functions

HIP provides the following built-in functions for reading a high-resolution timer from the device.

clock_t clock()
long long int clock64()

Returns the value of a counter that is incremented every clock cycle on devices. The difference in
values returned provides the cycles used.

3.4.7.8 Atomic Functions

Atomic functions execute as read-modify-write operations residing in global or shared memory.
No other device or thread can observe or modify the memory location during an atomic operation.
If multiple instructions from different devices or threads target the same memory location, the
instructions are serialized in an undefined order.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 45

[AMD Public Use]

HIP supports the following atomic operations:

Function Supported in
HIP

Supported in
CUDA

int atomicAdd(int* address, int val) ✓ ✓
unsigned int atomicAdd(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicAdd(unsigned long long int* address, unsigned
long long int val)

✓ ✓

float atomicAdd(float* address, float val) ✓ ✓
int atomicSub(int* address, int val) ✓ ✓
unsigned int atomicSub(unsigned int* address,unsigned int val) ✓ ✓
int atomicExch(int* address, int val) ✓ ✓
unsigned int atomicExch(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicExch(unsigned long long int* address, unsigned
long long int val)

✓ ✓

float atomicExch(float* address, float val) ✓ ✓
int atomicMin(int* address, int val) ✓ ✓
unsigned int atomicMin(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicMin(unsigned long long int* address, unsigned
long long int val)

✓ ✓

int atomicMax(int* address, int val) ✓ ✓
unsigned int atomicMax(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicMax(unsigned long long int* address, unsigned
long long int val)

✓ ✓

unsigned int atomicInc(unsigned int* address) ✗ ✓
unsigned int atomicDec(unsigned int* address) ✗ ✓
int atomicCAS(int* address, int compare, int val) ✓ ✓
unsigned int atomicCAS(unsigned int* address,unsigned int
compare,unsigned int val)

✓ ✓

unsigned long long int atomicCAS(unsigned long long int* address, unsigned
long long int compare,unsigned long long int val)

✓ ✓

int atomicAnd(int* address, int val) ✓ ✓
unsigned int atomicAnd(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicAnd(unsigned long long int* address, unsigned
long long int val)

✓ ✓

int atomicOr(int* address, int val) ✓ ✓
unsigned int atomicOr(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicOr(unsigned long long int* address, unsigned
long long int val)

✓ ✓

int atomicXor(int* address, int val) ✓ ✓
unsigned int atomicXor(unsigned int* address,unsigned int val) ✓ ✓
unsigned long long int atomicXor(unsigned long long int* address, unsigned
long long int val))

✓ ✓

Caveats and Features Under-Development

HIP enables atomic operations on 32-bit integers. Additionally, it supports an atomic float add.
AMD hardware, however, implements the float add using a CAS loop, so this function may not
perform efficiently.

HIP Programming Guide 1.0 Rev. 0323 March 2021

46 Programming with HIP Chapter 3

3.4.7.9 Warp Cross-Lane Functions

Warp cross-lane functions operate across all lanes in a warp. The hardware guarantees that all
warp lanes will execute in lockstep, so additional synchronization is unnecessary and the
instructions use no shared memory.

Note that Nvidia and AMD devices have different warp sizes, so portable code should use the
warpSize built-ins to query the warp size. Hipified code from the CUDA path requires careful
review to ensure it doesn’t assume a waveSize of 32. "Wave-aware" code that assumes a waveSize
of 32 will run on a wave-64 machine, but it will utilize only half of the machine resources.

WarpSize built-ins should only be used in device functions and its value depends on GPU arch.
Host functions should use hipGetDeviceProperties to get the default warp size of a GPU device:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceID);
 int w = props.warpSize;
 // implement portable algorithm based on w (rather than assume 32 or 64)

Note, assembly kernels may be built for warp size, which is different than the default warp size.

3.4.7.10 Warp Vote and Ballot Functions

int __all(int predicate)
int __any(int predicate)
uint64_t __ballot(int predicate)

Threads in a warp are referred to as lanes and are numbered from 0 to warpSize -- 1. For these
functions, each warp lane contributes 1 -- the bit value (the predicate), which is efficiently
broadcast to all lanes in the warp. The 32-bit int predicate from each lane reduces to a 1-bit value:
0 (predicate = 0) or 1 (predicate != 0). __any and __all provide a summary view of the predicates
that the other warp lanes contribute:

• __any() returns 1 if any warp lane contributes a nonzero predicate, or 0 otherwise

• __all() returns 1 if all other warp lanes contribute nonzero predicates, or 0 otherwise

Applications can test whether the target platform supports the any/all instruction using the
hasWarpVote device property or the HIP_ARCH_HAS_WARP_VOTE compiler define.

__ballot provides a bit mask containing the 1-bit predicate value from each lane. The nth bit of the
result contains the 1 bit contributed by the nth warp lane. Note that HIP's __ballot function
supports a 64-bit return value (compared with 32 bits). Code ported from CUDA should support
the larger warp sizes that the HIP version of this instruction supports. Applications can test
whether the target platform supports the ballot instruction using the hasWarpBallot device
property or the HIP_ARCH_HAS_WARP_BALLOT compiler define.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 47

[AMD Public Use]

3.4.7.11 Warp Shuffle Functions

Half-float shuffles are not supported. The default width is warpSize---see Warp Cross-Lane
Functions. Applications should not assume the warpSize is 32 or 64.

int __shfl (int var, int srcLane, int width=warpSize);
float __shfl (float var, int srcLane, int width=warpSize);
int __shfl_up (int var, unsigned int delta, int width=warpSize);
float __shfl_up (float var, unsigned int delta, int width=warpSize);
int __shfl_down (int var, unsigned int delta, int width=warpSize);
float __shfl_down (float var, unsigned int delta, int width=warpSize) ;
int __shfl_xor (int var, int laneMask, int width=warpSize)
float __shfl_xor (float var, int laneMask, int width=warpSize);

3.4.7.12 Cooperative Groups Functions

Cooperative Groups is a mechanism for forming and communicating between groups of threads at
a granularity different than the block. This feature was introduced in CUDA 9. HIP supports the
following kernel language cooperative groups types or functions.

Function HIP CUDA
void thread_group.sync() ;  
unsigned thread_group.size();  
unsigned
thread_group.thread_rank() ;

 

bool thread_group.is_valid();  
grid_group this_grid();  
void grid_group.sync() ;  
unsigned grid_group.size() ;  
unsigned grid_group.thread_rank() ;  
bool grid_group.is_valid();  
multi_grid_group this_multi_grid() ;  
void multi_grid_group.sync();  
unsigned multi_grid_group.size() ;  
unsigned
multi_grid_group.thread_rank() ;

 

bool multi_grid_group.is_valid() ;  
unsigned
multi_grid_group.num_grids() ;

 

unsigned
multi_grid_group.grid_rank();

 

thread_block this_thread_block() ;  
multi_grid_group this_multi_grid() ;  
void multi_grid_group.sync();  
void thread_block.sync() ;  
unsigned thread_block.size() ;  
unsigned
thread_block.thread_rank() ;

 

bool thread_block.is_valid() ;  
dim3 thread_block.group_index() ;  
dim3 thread_block.thread_index()  

HIP Programming Guide 1.0 Rev. 0323 March 2021

48 Programming with HIP Chapter 3

3.4.7.13 Warp Matrix Functions

Warp matrix functions allow a warp to cooperatively operate on small matrices whose elements
are spread over the lanes in an unspecified manner. This feature was introduced in CUDA 9.

HIP does not support any of the kernel language warp matrix types or functions.

Function Supported in
HIP

Supported in
CUDA

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned lda)

✓
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned lda,
layout_t layout)

✓

void store_matrix_sync(T* mptr, fragment<...> &a, unsigned lda, layout_t
layout)

✓

void fill_fragment(fragment<...> &a, const T &value)

✓
void mma_sync(fragment<...> &d, const fragment<...> &a, const
fragment<...> &b, const fragment<...> &c , bool sat)

✓

3.4.7.14 Independent Thread Scheduling

The hardware support for independent thread scheduling introduced in certain architectures
supporting CUDA allows threads to progress independently of each other and enables intra-warp
synchronizations that were previously not allowed.

HIP does not support this type of thread scheduling.

3.4.7.15 Profiler Counter Function

The Cuda __prof_trigger() instruction is not supported.

3.4.7.16 Assert

The assert function is under development. HIP does support an "abort" call which will terminate
the process execution from inside the kernel.

3.4.7.17 Printf

The printf function is supported.

3.4.8 Device-Side Dynamic Global Memory Allocation

Device-side dynamic global memory allocation is under development.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 49

[AMD Public Use]

3.4.9 __launch_bounds__

GPU multiprocessors have a fixed pool of resources (primarily registers and shared memory)
which are shared by the actively running warps. Using more resources can increase IPC of the
kernel but reduces the resources available for other warps and limits the number of warps that can
be simultaneously running. Thus, GPUs have a complex relationship between resource usage and
performance.

__launch_bounds__ allows the application to provide usage hints that influence the resources
(primarily registers) used by the generated code. It is a function attribute that must be attached to
a __global__ function:

__global__ void `-__launch_bounds__`-(MAX_THREADS_PER_BLOCK, MIN_WARPS_PER_EU)
MyKernel(...) ...
MyKernel(...)

launch_bounds supports two parameters:

• MAX_THREADS_PER_BLOCK - The programmers guarantees that the kernel will be

launched with threads less than MAX_THREADS_PER_BLOCK. (On NVCC this maps to

the .maxntid PTX directive). If no launch_bounds is specified,

MAX_THREADS_PER_BLOCK is the maximum block size supported by the device

(typically 1024 or larger). Specifying MAX_THREADS_PER_BLOCK less than the maximum

effectively allows the compiler to use more resources than a default unconstrained

compilation that supports all possible block sizes at launch time. The threads-per-block is

the product of (hipBlockDim_x * hipBlockDim_y * hipBlockDim_z).

• MIN_WARPS_PER_EU - directs the compiler to minimize resource usage so that the

requested number of warps can be simultaneously active on a multi-processor. Since

active warps compete for the same fixed pool of resources, the compiler must reduce

resources required by each warp(primarily registers). MIN_WARPS_PER_EU is optional

and defaults to 1 if not specified. Specifying a MIN_WARPS_PER_EU greater than the

default 1 effectively constrains the compiler's resource usage.

3.4.9.1 Compiler Impact

The compiler uses these parameters as follows:

• The compiler uses the hints only to manage register usage and does not

automatically reduce shared memory or other resources.

• Compilation fails if the compiler cannot generate a kernel that meets the

requirements of the specified launch bounds.

• From MAX_THREADS_PER_BLOCK, the compiler derives the maximum number of

warps/block that can be used at launch time. Values of

MAX_THREADS_PER_BLOCK less than the default allows the compiler to use a

larger pool of registers: each warp uses registers, and this hint contains the launch

to a warps/block size that is less than maximum.

HIP Programming Guide 1.0 Rev. 0323 March 2021

50 Programming with HIP Chapter 3

• From MIN_WARPS_PER_EU, the compiler derives a maximum number of registers

that can be used by the kernel (to meet the required #simultaneous active blocks).

If MIN_WARPS_PER_EU is 1, then the kernel can use all registers supported by the

multiprocessor.

• The compiler ensures that the registers used in the kernel is less than both allowed

maximums, typically by spilling registers (to shared or global memory), or by using

more instructions.

• The compiler may use heuristics to increase register usage or may simply be able

to avoid spilling. The MAX_THREADS_PER_BLOCK is particularly useful in this

case, since it allows the compiler to use more registers and avoid situations where

the compiler constrains the register usage (potentially spilling) to meet the

requirements of a large block size that is never used at launch time.

3.4.9.2 CU and EU Definitions

A compute unit (CU) is responsible for executing the waves of a workgroup. It is composed of one
or more execution units (EU) that are responsible for executing waves. An EU can have enough
resources to maintain the state of more than one executing wave. This allows an EU to hide
latency by switching between waves in a similar way to symmetric multithreading on a CPU. To
allow the state for multiple waves to fit on an EU, the resources used by a single wave have to be
limited. Limiting such resources can allow greater latency hiding but it can result in having to spill
some register state to memory. This attribute allows an advanced developer to tune the number of
waves that are capable of fitting within the resources of an EU. It can be used to ensure at least a
certain number will fit to help hide latency and can also be used to ensure no more than a certain
number will fit to limit cache thrashing.

3.4.9.3 Porting from CUDA __launch_bounds

CUDA defines a __launch_bounds, which is also designed to control occupancy:

__launch_bounds(MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MULTIPROCESSOR)

The second parameter __launch_bounds parameters must be converted to the format used
__hip_launch_bounds, which uses warps and execution-units rather than blocks and multi-
processors (this conversion is performed automatically by hipify tools).

MIN_WARPS_PER_EXECUTION_UNIT = (MIN_BLOCKS_PER_MULTIPROCESSOR * MAX_THREADS_PER_BLOCK) /
32

The key differences in the interface are:

• Warps (rather than blocks): The developer is trying to tell the compiler to control resource

utilization to guarantee some amount of active Warps/EU for latency hiding. Specifying

active warps in terms of blocks appears to hide the micro-architectural details of the warp

size, however, makes the interface more confusing since the developer ultimately needs to

compute the number of warps to obtain the desired level of control.

• Execution Units (rather than multiProcessor): The use of execution units rather than

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 51

[AMD Public Use]

multiprocessors provides support for architectures with multiple execution units/multi-

processor. For example, the AMD GCN architecture has 4 execution units per

multiProcessor. The hipDeviceProps has a field executionUnitsPerMultiprocessor.

Platform-specific coding techniques such as #ifdef can be used to specify different

launch_bounds for NVCC and HIP-Clang platforms if desired.

3.4.9.4 Maxregcount

Unlike nvcc, HIP-Clang does not support the "--maxregcount" option. Instead, users are
encouraged to use the hip_launch_bounds directive since the parameters are more intuitive and
portable than micro-architecture details like registers, and also the directive allows per-kernel
control rather than an entire file. hip_launch_bounds works on both HIP-Clang and nvcc targets.

3.4.10 Register Keyword

The register keyword is deprecated in C++ and is silently ignored by both nvcc and HIP-Clang.
You can pass the option `-Wdeprecated-register` to the compiler warning message.

3.4.11 Pragma Unroll

Unroll with a bound that is known at compile-time is supported. For example:

#pragma unroll 16 /* hint to compiler to unroll next loop by 16 */
for (int i=0; i<16; i++) ...
#pragma unroll 1 /* tell compiler to never unroll the loop */
for (int i=0; i<16; i++) ...
#pragma unroll /* hint to compiler to completely unroll next loop. */
for (int i=0; i<16; i++) ...

3.4.12 In-Line Assembly

GCN ISA In-line assembly is supported. For example:

asm volatile ("v_mac_f32_e32 %0, %2, %3" : "=v" (out[i]) : "0"(out[i]), "v" (a), "v"
(in[i]));

The HIP compiler inserts the GCN into the kernel using asm() Assembler statement. volatile
keyword is used so that the optimizers must not change the number of volatile operations or
change their order of execution relative to other volatile operations. v_mac_f32_e32 is the GCN
instruction. For more information, refer to the AMD GCN3 ISA architecture manual Index for the
respective operand in the ordered fashion is provided by % followed by a position in the list of
operands "v" is the constraint code (for target-specific AMDGPU) for 32-bit VGPR register. For
more information, refer to the Supported Constraint Code List for AMDGPU. Output Constraints
are specified by an "=" prefix as shown above ("=v"). This indicates that assembly will write to
this operand, and the operand will then be made available as a return value of the asm expression.
Input constraints do not have a prefix - just the constraint code. The constraint string of "0" says to
use the assigned register for output as an input as well (it being the 0'th constraint).

HIP Programming Guide 1.0 Rev. 0323 March 2021

52 Programming with HIP Chapter 3

3.4.13 C++ Support

The following C++ features are not supported:

• Run-time-type information (RTTI)

• Virtual functions

• Try/catch

3.4.14 Kernel Compilation

hipcc now supports compiling C++/HIP kernels to binary code objects.

The file format for binary is `.co` which means Code Object. The following command builds the
code object using `hipcc`.

`hipcc --genco --offload-arch=[TARGET GPU] [INPUT FILE] -o [OUTPUT FILE]`
[TARGET GPU] = GPU architecture
[INPUT FILE] = Name of the file containing kernels
[OUTPUT FILE] = Name of the generated code object file

NOTE: When using binary code objects is that the number of arguments to the kernel is different
on HIP-Clang and NVCC path. Refer to the sample in samples/0_Intro/module_api for differences
in the arguments to be passed to the kernel.

3.4.15 gfx-arch-specific-kernel

Clang defined '__gfx*__' macros can be used to execute gfx arch-specific codes inside the kernel.
Refer to the sample 14_gpu_arch in samples/2_Cookbook.

3.5 ROCm Code Object Tooling
ROCm compiler-generated code objects (executables, object files, and shared object libraries) can
be examined and extracted with the tools listed in this section.

3.5.1 Uniform Resource Identifier Syntax

ROCm code objects can be listed or accessed using the following Uniform Resource Identifier
(URI) syntax:

code_object_uri ::== file_uri | memory_uri
 file_uri ::== file:// extract_file [range_specifier]
 memory_uri ::== memory:// process_id range_specifier
 range_specifier ::== [# | ?] offset= number & size= number
 extract_file ::== URI_ENCODED_OS_FILE_PATH
 process_id ::== DECIMAL_NUMBER
 number ::== HEX_NUMBER | DECIMAL_NUMBER | OCTAL_NUMBER

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 53

[AMD Public Use]

3.5.1.1 Examples

• file://dir1/dir2/hello_world#offset=133&size=14472

• memory://1234#offset=0x20000&size=3000

3.5.2 List Available ROCm Code Objects

Use this tool to list available ROCm code objects in a given executable. Code objects are listed
using the URI syntax.

Usage: roc-obj-ls [-v|h] <executable-name> ...

Options:

• -v Verbose output (includes Entry ID)

• -h Show this help message

 Example:

 roc-obj-ls ./hipLaunchParm

Output:

file://./hipLaunchParm#offset=24576&size=0

file://./hipLaunchParm#offset=24576&size=46816

file://./hipLaunchParm#offset=73728&size=46816

file://./hipLaunchParm#offset=122880&size=46816

3.5.3 ROCm Code Objects Extraction

You can extract the available ROCm code objects from a specified URI.

Usage: rocm-obj-extract [-o|v|h] URI...

NOTE

• URIs can be read from STDIN, one per line.

• The specified URIs extracts code objects into files named:

<executable_name>-[pid]-offset-size.co

file://./hipLaunchParm#offset=24576&size=0
file://./hipLaunchParm#offset=24576&size=46816
file://./hipLaunchParm#offset=73728&size=46816
file://./hipLaunchParm#offset=122880&size=46816

HIP Programming Guide 1.0 Rev. 0323 March 2021

54 Programming with HIP Chapter 3

Options:

• -o Path for output. If "-" specified, the code object is printed to STDOUT.

• -v Verbose output (includes Entry ID).

• -h Shows the Help message

3.5.4 ROCm Code Object Tooling Examples

3.5.4.1 Dump all code objects to current directory

roc-obj-ls <exe> | roc-obj-extract

3.5.4.2 Dump the ISA for a specific target: e.g gfx906

roc-obj-ls -v <exe> | grep "gfx908" | awk '{print $2}' | roc-obj-extract -o - | llvm-
readelf -h - | grep Flags

3.5.4.3 Check the e_flags for the gfx908 code object

roc-obj-ls -v <exe> | grep "gfx908" | awk '{print $2}' | roc-obj-extract -o - | llvm-
readelf -h - | grep Flags

3.5.4.4 Disassemble the fourth code object

roc-obj-ls <exe> | sed -n 4p | roc-obj-extract -o - | llvm-objdump -d -

3.5.4.5 Sort embedded code objects by size

for uri in $(roc-obj-ls <exe>); do printf "%d: %s\n" "$(roc-obj-extract -o - "$uri" | wc
-c)" "$uri"; done | sort -n

3.5.4.6 Compare disassembly of gfx803 and gfx900 code objects

dis() { roc-obj-ls -v <exe> | grep "$1" | awk '{print $2}' | roc-obj-extract -o - |
llvm-objdump -d -; }

3.6 HIP Logging
HIP provides a logging mechanism, which is a convenient way of printing important information
to trace HIP API and runtime codes during the execution of a HIP application. It assists the HIP
development team in the development of HIP runtime and is useful for HIP application developers
as well. Depending on the setting of logging level and logging mask, HIP logging will print
different kinds of information, for different types of functionalities such as HIP APIs, executed
kernels, queue commands, and queue contents, etc.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 55

[AMD Public Use]

3.6.1 HIP Logging Level

By default, HIP logging is disabled, it can be enabled via environment setting,

AMD_LOG_LEVEL

The value of the setting controls different logging level.

enum LogLevel {
LOG_NONE = 0,
LOG_ERROR = 1,
LOG_WARNING = 2,
LOG_INFO = 3,
LOG_DEBUG = 4
};

3.6.2 HIP Logging Mask

Logging mask is designed to print types of functionalities during the execution of HIP application.
It can be set as one of the following values:

enum LogMask {
 LOG_API = 0x00000001, //!< API call
 LOG_CMD = 0x00000002, //!< Kernel and Copy Commands and Barriers
 LOG_WAIT = 0x00000004, //!< Synchronization and waiting for commands to finish
 LOG_AQL = 0x00000008, //!< Decode and display AQL packets
 LOG_QUEUE = 0x00000010, //!< Queue commands and queue contents
 LOG_SIG = 0x00000020, //!< Signal creation, allocation, pool
 LOG_LOCK = 0x00000040, //!< Locks and thread-safety code.
 LOG_KERN = 0x00000080, //!< kernel creations and arguments, etc.
 LOG_COPY = 0x00000100, //!< Copy debug
 LOG_COPY2 = 0x00000200, //!< Detailed copy debug
 LOG_RESOURCE = 0x00000400, //!< Resource allocation, performance-impacting events.
 LOG_INIT = 0x00000800, //!< Initialization and shutdown
 LOG_MISC = 0x00001000, //!< misc debug, not yet classified
 LOG_AQL2 = 0x00002000, //!< Show raw bytes of AQL packet
 LOG_CODE = 0x00004000, //!< Show code creation debug
 LOG_CMD2 = 0x00008000, //!< More detailed command info, including barrier
commands
 LOG_LOCATION = 0x00010000, //!< Log message location
 LOG_ALWAYS = 0xFFFFFFFF, //!< Log always even mask flag is zero
};

Once AMD_LOG_LEVEL is set, the logging mask is set as default with the value 0x7FFFFFFF.
However, for different purpose of logging functionalities, logging mask can be defined as well via
an environment variable,

AMD_LOG_MASK

HIP Programming Guide 1.0 Rev. 0323 March 2021

56 Programming with HIP Chapter 3

3.6.3 HIP Logging Command

To print HIP logging information, the function is defined as

#define ClPrint(level, mask, format, ...)
 do {
 if (AMD_LOG_LEVEL >= level) {
 if (AMD_LOG_MASK & mask || mask == amd::LOG_ALWAYS) {
 if (AMD_LOG_MASK & amd::LOG_LOCATION) {
 amd::log_printf(level, __FILENAME__, __LINE__, format, ##__VA_ARGS__);
 } else {
 amd::log_printf(level, "", 0, format, ##__VA_ARGS__);
 }
 }
 }
 } while (false)

In the HIP code, call ClPrint() function with proper input variables as needed, for example,

ClPrint(amd::LOG_INFO, amd::LOG_INIT, "Initializing HSA stack.");

3.6.4 HIP Logging Example

Below is an example to enable HIP logging and get logging information during execution of
hipinfo,

user@user-test:~/hip/bin$ export AMD_LOG_LEVEL=4
user@user-test:~/hip/bin$./hipinfo
:3:rocdevice.cpp :453 : 23647210092: Initializing HSA stack.
:3:comgrctx.cpp :33 : 23647639336: Loading COMGR library.
:3:rocdevice.cpp :203 : 23647687108: Numa select cpu
agent[0]=0x13407c0(fine=0x13409a0,coarse=0x1340ad0) for gpu agent=0x1346150
:4:runtime.cpp :82 : 23647698669: init
:3:hip_device_runtime.cpp :473 : 23647698869: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess
:3:hip_device_runtime.cpp :502 : 23647698990: 5617 : [7fad295dd840] hipSetDevice (0)
:3:hip_device_runtime.cpp :507 : 23647699042: 5617 : [7fad295dd840] hipSetDevice:
Returned hipSuccess
--
device# 0
:3:hip_device.cpp :150 : 23647699276: 5617 : [7fad295dd840]
hipGetDeviceProperties (0x7ffdbe7db730, 0)
:3:hip_device.cpp :237 : 23647699335: 5617 : [7fad295dd840]
hipGetDeviceProperties: Returned hipSuccess
Name: Device 7341
pciBusID: 3
pciDeviceID: 0
pciDomainID: 0
multiProcessorCount: 11
maxThreadsPerMultiProcessor: 2560
isMultiGpuBoard: 0
clockRate: 1900 Mhz
memoryClockRate: 875 Mhz
memoryBusWidth: 0
clockInstructionRate: 1000 Mhz
totalGlobalMem: 7.98 GB

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 3 Programming with HIP 57

[AMD Public Use]

maxSharedMemoryPerMultiProcessor: 64.00 KB
totalConstMem: 8573157376
sharedMemPerBlock: 64.00 KB
canMapHostMemory: 1
regsPerBlock: 0
warpSize: 32
l2CacheSize: 0
computeMode: 0
maxThreadsPerBlock: 1024
maxThreadsDim.x: 1024
maxThreadsDim.y: 1024
maxThreadsDim.z: 1024
maxGridSize.x: 2147483647
maxGridSize.y: 2147483647
maxGridSize.z: 2147483647
major: 10
minor: 12
concurrentKernels: 1
cooperativeLaunch: 0
cooperativeMultiDeviceLaunch: 0
arch.hasGlobalInt32Atomics: 1
arch.hasGlobalFloatAtomicExch: 1
arch.hasSharedInt32Atomics: 1
arch.hasSharedFloatAtomicExch: 1
arch.hasFloatAtomicAdd: 1
arch.hasGlobalInt64Atomics: 1
arch.hasSharedInt64Atomics: 1
arch.hasDoubles: 1
arch.hasWarpVote: 1
arch.hasWarpBallot: 1
arch.hasWarpShuffle: 1
arch.hasFunnelShift: 0
arch.hasThreadFenceSystem: 1
arch.hasSyncThreadsExt: 0
arch.hasSurfaceFuncs: 0
arch.has3dGrid: 1
arch.hasDynamicParallelism: 0
gcnArch: 1012
isIntegrated: 0
maxTexture1D: 65536
maxTexture2D.width: 16384
maxTexture2D.height: 16384
maxTexture3D.width: 2048
maxTexture3D.height: 2048
maxTexture3D.depth: 2048
isLargeBar: 0
:3:hip_device_runtime.cpp :471 : 23647701557: 5617 : [7fad295dd840] hipGetDeviceCount
(0x7ffdbe7db714)
:3:hip_device_runtime.cpp :473 : 23647701608: 5617 : [7fad295dd840] hipGetDeviceCount:
Returned hipSuccess
:3:hip_peer.cpp :76 : 23647701731: 5617 : [7fad295dd840]
hipDeviceCanAccessPeer (0x7ffdbe7db728, 0, 0)
:3:hip_peer.cpp :60 : 23647701784: 5617 : [7fad295dd840] canAccessPeer:
Returned hipSuccess
:3:hip_peer.cpp :77 : 23647701831: 5617 : [7fad295dd840]
hipDeviceCanAccessPeer: Returned hipSuccess
peers:
:3:hip_peer.cpp :76 : 23647701921: 5617 : [7fad295dd840]
hipDeviceCanAccessPeer (0x7ffdbe7db728, 0, 0)

HIP Programming Guide 1.0 Rev. 0323 March 2021

58 Programming with HIP Chapter 3

:3:hip_peer.cpp :60 : 23647701965: 5617 : [7fad295dd840] canAccessPeer:
Returned hipSuccess
:3:hip_peer.cpp :77 : 23647701998: 5617 : [7fad295dd840]
hipDeviceCanAccessPeer: Returned hipSuccess
non-peers: device#0

:3:hip_memory.cpp :345 : 23647702191: 5617 : [7fad295dd840] hipMemGetInfo (
0x7ffdbe7db718, 0x7ffdbe7db720)
:3:hip_memory.cpp :360 : 23647702243: 5617 : [7fad295dd840] hipMemGetInfo:
Returned hipSuccess
memInfo.total: 7.98 GB
memInfo.free: 7.98 GB (100%)

3.6.5 HIP Logging Tips

• HIP logging works for both release and debug version of HIP application.

• Logging function with different logging level can be called in the code as needed.

• Information with a logging level less than AMD_LOG_LEVEL will be printed.

• If need to save the HIP logging output information in a file, just define the file at the

command when running the application at the terminal, for example,

user@user-test:~/hip/bin$./hipinfo > ~/hip_log.txt

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 59

[AMD Public Use]

Chapter 4 Transiting from CUDA to HIP

4.1 Transition Tool: HIPIFY
4.1.1 Sample and Practice

Here is a simple test, which shows how to use hipify-Perl to port CUDA code to HIP. See a
related blog that explains the example. Now, it is even simpler and requires no manual
modification to the hipified source code - just hipify and compile:

1. Add hip/bin path to the PATH.

 $ export PATH=$PATH:[MYHIP]/bin

2. Define the environment variable.

 $ export HIP_PATH=[MYHIP]

3. Build an executable file.

 $ cd ~/hip/samples/0_Intro/square
 $ make
 /home/user/hip/bin/hipify-perl square.cu > square.cpp
 /home/user/hip/bin/hipcc square.cpp -o square.out
 /home/user/hip/bin/hipcc -use-staticlib square.cpp -o square.out.static

4. Execute the file.

 $./square.out
 info: running on device Vega20 [Radeon Pro W5500]
 info: allocate host mem (7.63 MB)
 info: allocate device mem (7.63 MB)
 info: copy Host2Device
 info: launch 'vector_square' kernel
 info: copy Device2Host
 info: check result
 PASSED!

http://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial

HIP Programming Guide 1.0 Rev. 0323 March 2021

60 Transiting from CUDA to HIP Chapter 4

4.2 HIP Porting Process
4.2.1 Porting a New CUDA Project

4.2.1.1 General Tips

• Starting the port on a CUDA machine is often the easiest approach since you can

incrementally port pieces of the code to HIP while leaving the rest in CUDA. (Recall that

on CUDA machines HIP is just a thin layer over CUDA, so the two code types can

interoperate on nvcc platforms.) Also, the HIP port can be compared with the original

CUDA code for function and performance.

• Once the CUDA code is ported to HIP and is running on the CUDA machine, compile the

HIP code using the HIP compiler on an AMD machine.

• HIP ports can replace CUDA versions: HIP can deliver the same performance as a native

CUDA implementation, with the benefit of portability to both Nvidia and AMD architectures

as well as a path to future C++ standard support. You can handle platform-specific

features through the conditional compilation or by adding them to the open-source HIP

infrastructure.

• Use bin/hipconvertinplace-perl.sh to hipify all code files in the CUDA source directory.

4.2.1.2 Scanning existing CUDA code to scope the porting effort

The hipexamine-perl.sh tool will scan a source directory to determine which files contain CUDA
code and how much of that code can be automatically hipified.

> cd examples/rodinia_3.0/cuda/kmeans
> $HIP_DIR/bin/hipexamine-perl.sh.
info: hipify ./kmeans.h =====>
info: hipify ./unistd.h =====>
info: hipify ./kmeans.c =====>
info: hipify ./kmeans_cuda_kernel.cu =====>
 info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0
event:0 err:0 def:0 tex:3 other:0) warn:0 LOC:185
info: hipify ./getopt.h =====>
info: hipify ./kmeans_cuda.cu =====>
 info: converted 49 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:0 math:0 stream:0
event:0 err:0 def:0 tex:12 other:0) warn:0 LOC:311
info: hipify ./rmse.c =====>
info: hipify ./cluster.c =====>
info: hipify ./getopt.c =====>
info: hipify ./kmeans_clustering.c =====>
info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0
event:0 err:0 def:0 tex:15 other:0) warn:0 LOC:3607
 kernels (1 total) : kmeansPoint(1)

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 61

[AMD Public Use]

hipexamine-perl scans each code file (cpp, c, h, hpp, etc.) found in the specified directory:

• Files with no CUDA code (kmeans.h) print a one-line summary just listing the source file

name.

• Files with CUDA code print a summary of what was found - for example, the

kmeans_cuda_kernel.cu file:

info: hipify ./kmeans_cuda_kernel.cu =====>
info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0 event:0

• Information in kmeans_cuda_kernel.cu :

o How many CUDA calls were converted to HIP (40)

o Breakdown of the CUDA functionality used (dev:0 mem:0 etc). This file uses many

CUDA builtins (37) and texture functions (3).

o Warning for code that looks like CUDA API but was not converted (0 in this file).

o Count Lines-of-Code (LOC) - 185 for this file.

• hipexamine-perl also presents a summary at the end of the process for the statistics

collected across all files. This has a similar format to the per-file reporting, and also

includes a list of all kernels which have been called. An example from above:

info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0
event:0 err:0 def:0 tex:15 other:0) warn:0 LOC:3607
kernels (1 total) : kmeansPoint(1)

4.2.1.3 Converting a project in-place

> hipify-perl --inplace

For each input file FILE, this script will: - If FILE.prehip file does not exist, copy the original
code to a new file with extension.prehip. Then hipify the code file. If “FILE.prehip” file exists,
hipify FILE.prehip and save to FILE.

This is useful for testing improvements to the hipify toolset.

The hipconvertinplace-perl.sh script will perform an in-place conversion for all code files in the
specified directory. This can be quite handy when dealing with an existing CUDA code base since
the script preserves the existing directory structure and filenames - and includes work. After
converting in-place, you can review the code to add additional parameters to directory names.

> hipconvertinplace-perl.sh MY_SRC_DIR

HIP Programming Guide 1.0 Rev. 0323 March 2021

62 Transiting from CUDA to HIP Chapter 4

4.2.1.4 Library Equivalents

CUDA
Library

ROCm
Library

Comment

cuBLAS rocBLAS Basic Linear Algebra Subroutines
cuFFT rocFFT Fast Fourier Transfer Library
cuSPARSE rocSPARSE Sparse BLAS + SPMV
cuSolver rocSOLVER Lapack library
AMG-X rocALUTION Sparse iterative solvers and preconditioners with Geometric and Algebraic

MultiGrid
Thrust rocThrust C++ parallel algorithms library
CUB rocPRIM Low Level Optimized Parallel Primitives
cuDNN MIOpen Deep learning Solver Library
cuRAND rocRAND Random Number Generator Library
EIGEN EIGEN C++ template library for linear algebra: matrices, vectors, numerical solvers,
NCCL RCCL Communications Primitives Library based on the MPI equivalents

4.2.2 Distinguishing Compiler Modes

4.2.2.1 Identifying HIP Target Platform

All HIP projects target either AMD or NVIDIA platform. The platform affects the headers that are
included and libraries that are used for linking.

• HIP_PLATFORM_HCC is defined if the HIP platform targets AMD

• HIP_PLATFORM_NVCC is defined if the HIP platform targets NVIDIA

4.2.2.2 Identifying the Compiler: HIP-Clang or NVIDIA

Often, it is useful to know whether the underlying compiler is HIP-Clang or NVIDIA. This
knowledge can guard platform-specific code or aid in platform-specific performance tuning.

#ifdef __HIP_PLATFORM_HCC__
// Compiled with HIP-Clang
#endif
#ifdef __NVCC__
// Compiled with nvcc
// Could be compiling with CUDA language extensions enabled (for example, a ".cu file)
// Could be in pass-through mode to an underlying host compile OR (for example, a .cpp
file)
#ifdef __CUDACC__
// Compiled with nvcc (CUDA language extensions enabled)

HIP-Clang directly generates the host code (using the Clang x86 target) without passing the code
to another host compiler. Thus, they have no equivalent of the __CUDACC__ define.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 63

[AMD Public Use]

4.2.2.3 Identifying Current Compilation Pass: Host or Device

NVCC makes two passes over the code: one for host code and one for device code. HIP-Clang
will have multiple passes over the code: one for the host code, and one for each architecture on the
device code. __HIP_DEVICE_COMPILE__ is set to a nonzero value when the compiler (HIP-
Clang or nvcc) is compiling code for a device inside a __global__ kernel or for a device function.
__HIP_DEVICE_COMPILE__ can replace #ifdef checks on the __CUDA_ARCH__ define.

// #ifdef __CUDA_ARCH__
#if __HIP_DEVICE_COMPILE__

Unlike __CUDA_ARCH__, the __HIP_DEVICE_COMPILE__ value is 1 or undefined, and it
does not represent the feature capability of the target device.

4.2.3 Compiler Defines: Summary

Define HIP-Clang nvcc Other (GCC, ICC,
Clang, etc.)

HIP-related defines:

__HIP_PLATFORM_HCC__ Defined Undefined Defined if targeting
AMD platform;
undefined otherwise

__HIP_PLATFORM_NVCC__ Undefined Defined Defined if targeting
nvcc platform;
undefined otherwise

__HIP_DEVICE_COMPILE__ 1 if compiling for
device; undefined if
compiling for host

1 if compiling for device;
undefined if compiling for
host

Undefined

__HIPCC__ Defined Defined Undefined
__HIP_ARCH_* 0 or 1 depending on

feature support (see
below)

0 or 1 depending on feature
support (see below)

0

nvcc-related defines:

__CUDACC__ Defined if source code
is compiled by nvcc;
undefined otherwise

Undefined

__NVCC__ Undefined Defined Undefined
__CUDA_ARCH__ Undefined Unsigned representing

compute capability (e.g.,
"130") if in device code; 0 if
in host code

Undefined

hip-clang-related defines:

__HIP__ Defined Undefined Undefined
HIP-Clang common defines:

__clang__ Defined Defined Undefined

HIP Programming Guide 1.0 Rev. 0323 March 2021

64 Transiting from CUDA to HIP Chapter 4

4.3 Identifying Architecture Features
4.3.1 HIP_ARCH Defines

Some CUDA code tests __CUDA_ARCH__ for a specific value to determine whether the
machine supports a certain architectural feature. For instance,

#if (__CUDA_ARCH__ >= 130)
// doubles are supported

This type of code requires special attention since AMD and CUDA devices have different
architectural capabilities. Moreover, you cannot determine the presence of a feature using a simple
comparison against an architecture's version number. HIP provides a set of defines and device
properties to query whether a specific architectural feature is supported.

The __HIP_ARCH_* defines can replace comparisons of __CUDA_ARCH__ values:

//#if (__CUDA_ARCH__ >= 130) // non-portable
if __HIP_ARCH_HAS_DOUBLES__ { // portable HIP feature query
 // doubles are supported
}

For host code, the __HIP_ARCH__* defines are set to 0. You should only use the HIP_ARCH
fields in the device code.

4.3.2 Device-Architecture Properties

The host code should query the architecture feature flags in the device properties that
hipGetDeviceProperties returns, rather than testing the "major" and "minor" fields directly:

hipGetDeviceProperties(&deviceProp, device);
//if ((deviceProp.major == 1 && deviceProp.minor < 2)) // non-portable
if (deviceProp.arch.hasSharedInt32Atomics) { // portable HIP feature query
 // has shared int32 atomic operations ...
}

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 65

[AMD Public Use]

4.3.3 Table of Architecture Properties

The table below shows the full set of architectural properties that HIP supports.

Define (use only in device code) Device Property (run-
time query)

Comment

32-bit atomics:

__HIP_ARCH_HAS_GLOBAL_INT32_ATOMICS__ hasGlobalInt32Atomics 32-bit integer
atomics for global
memory

__HIP_ARCH_HAS_GLOBAL_FLOAT_ATOMIC_EXCH_
_

hasGlobalFloatAtomicExc
h

32-bit float atomic
exchange for
global memory

__HIP_ARCH_HAS_SHARED_INT32_ATOMICS__ hasSharedInt32Atomics 32-bit integer
atomics for shared
memory

__HIP_ARCH_HAS_SHARED_FLOAT_ATOMIC_EXCH_
_

hasSharedFloatAtomicExc
h

32-bit float atomic
exchange for
shared memory

__HIP_ARCH_HAS_FLOAT_ATOMIC_ADD__ hasFloatAtomicAdd 32-bit float atomic
add in global and
shared memory

64-bit atomics

__HIP_ARCH_HAS_GLOBAL_INT64_ATOMICS__ hasGlobalInt64Atomics 64-bit integer
atomics for global
memory

__HIP_ARCH_HAS_SHARED_INT64_ATOMICS__ hasSharedInt64Atomics 64-bit integer
atomics for shared
memory

Doubles

__HIP_ARCH_HAS_DOUBLES__ hasDoubles Double-precision
floating point

Warp cross-lane operations:

__HIP_ARCH_HAS_WARP_VOTE__ hasWarpVote Warp vote
instructions (any,
all)

__HIP_ARCH_HAS_WARP_BALLOT__ hasWarpBallot Warp ballot
instructions

__HIP_ARCH_HAS_WARP_SHUFFLE__ hasWarpShuffle Warp shuffle
operations (shfl_*)

__HIP_ARCH_HAS_WARP_FUNNEL_SHIFT__ hasFunnelShift Funnel shift two
input words into
one

Sync

__HIP_ARCH_HAS_THREAD_FENCE_SYSTEM__ hasThreadFenceSystem threadfence_syste
m

__HIP_ARCH_HAS_SYNC_THREAD_EXT__ hasSyncThreadsExt syncthreads_count,
syncthreads_and,
syncthreads_or

Miscellaneous

__HIP_ARCH_HAS_SURFACE_FUNCS__ hasSurfaceFuncs

HIP Programming Guide 1.0 Rev. 0323 March 2021

66 Transiting from CUDA to HIP Chapter 4

Define (use only in device code) Device Property (run-
time query)

Comment

__HIP_ARCH_HAS_3DGRID__ has3dGrid Grids and groups
are 3D

__HIP_ARCH_HAS_DYNAMIC_PARALLEL__ hasDynamicParallelism

4.3.4 Finding HIP

Makefiles can use the following syntax to conditionally provide a default HIP_PATH if one does
not exist:

HIP_PATH ?= $(shell hipconfig --path)

4.3.5 Identifying HIP Runtime

HIP can depend on ROCclr, or NVCC as runtime.

The AMD platform HIP uses the Radeon Open Compute common language runtime called
ROCclr. ROCclr is a virtual device interface that HIP runtimes interact with different backends,
which allows runtimes to work on Linux and Windows without much effort.

On the Nvidia platform, HIP is just a thin layer on top of CUDA. On a non-AMD platform, HIP
runtime determines if nvcc is available and can be used. If available, HIP_PLATFORM is set to
nvcc and underneath CUDA path is used.

4.3.6 hipLaunchKernel

hipLaunchKernel is a variadic macro that accepts as parameters the launch configurations (grid
dims, group dims, stream, dynamic shared size) followed by a variable number of kernel
arguments. This sequence is then expanded into the appropriate kernel launch syntax depending on
the platform. While this can be a convenient single-line kernel launch syntax, the macro
implementation can cause issues when nested inside other macros. For example, consider the
following:

// Will cause compile error:
#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 (command); /* The nested () will cause compile error */\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 67

[AMD Public Use]

NOTE: Avoid nesting macro parameters inside parenthesis - here's an alternative that will work:

#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 command;\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

4.3.7 Compiler Options

HIPcc is a portable compiler driver that calls nvcc or HIP-Clang (depending on the target system)
and attach all required include and library options. It passes options through to the target compiler.
Tools that call hipcc must ensure the compiler options are appropriate for the target compiler. The
hipconfig script may help in identifying the target platform, compiler, and runtime. It can also help
set options appropriately.

4.3.7.1 Compiler Options Supported on AMD Platforms

Option Description

--amdgpu-target=<gpu_arch> [DEPRECATED] This option is replaced by `--offload-arch=<target>`.
Generate code for the given GPU target. Supported targets are gfx701, gfx801,
gfx802, gfx803, gfx900, gfx906, gfx908, gfx1010, gfx1011, gfx1012, gfx1030,
gfx1031. This option could appear multiple times on the same command line
to generate a fat binary for multiple targets.

--fgpu-rdc Generate relocatable device code, which allows kernels or device functions
calling device functions in different translation units.

-ggdb Equivalent to `-g` plus tuning for GDB. This is recommended when using
ROCm's GDB to debug GPU code.

--gpu-max-threads-per-
block=<num>

Generate code to support up to the specified number of threads per block.

-O<n> Specify the optimization level.

-offload-arch=<target> Specify the AMD GPU [target ID]

https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

-save-temps Save the compiler-generated intermediate files.

-v Show the compilation steps.

https://clang.llvm.org/docs/ClangOffloadBundlerFileFormat.html#target-id

HIP Programming Guide 1.0 Rev. 0323 March 2021

68 Transiting from CUDA to HIP Chapter 4

4.3.7.2 Option for specifying GPU processor

To specify target ID, use

--offload-arch=X

NOTE: For backward compatibility, hipcc also accepts --amdgpu-target=X for specifying target
ID. However, it will be deprecated in future releases.

4.3.8 Linking Issues

4.3.8.1 Linking with hipcc

hipcc adds the necessary libraries for HIP as well as for the accelerator compiler (nvcc or AMD
compiler). It is recommended to link with hipcc since it automatically links the binary to the
necessary HIP runtime libraries. It also enables linking and managing GPU objects.

-lm Option

NOTE: hipcc adds -lm by default to the link command.

4.4 Linking Code with Other Compilers
CUDA code often uses nvcc for accelerator code (defining and launching kernels, typically
defined in .cu or .cuh files). It also uses a standard compiler (g++) for the rest of the application.
nvcc is a preprocessor that employs a standard host compiler (gcc) to generate the host code. The
code compiled using this tool can employ only the intersection of language features supported by
both nvcc and the host compiler. In some cases, you must take care to ensure the data types and
alignment of the host compiler are identical to those of the device compiler. Only some host
compilers are supported---for example, recent nvcc versions lack Clang host-compiler capability.

HIP-Clang generates both device and host code using the same Clang-based compiler. The code
uses the same API as gcc, which allows code generated by different gcc-compatible compilers to
be linked together. For example, code compiled using HIP-Clang can link with code compiled
using "standard" compilers (such as gcc, ICC, and Clang). Take care to ensure all compilers use
the same standard C++ header and library formats.

4.4.1 libc++ and libstdc++

hipcc links to libstdc++ by default. This provides better compatibility between g++ and HIP.

If you pass "--stdlib=libc++" to hipcc, hipcc will use the libc++ library. Generally, libc++ provides
a broader set of C++ features while libstdc++ is the standard for more compilers (notably
including g++).

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 69

[AMD Public Use]

When cross-linking C++ code, any C++ functions that use types from the C++ standard library
(including std::string, std::vector and other containers) must use the same standard-library
implementation. They include the following:

• Functions or kernels defined in HIP-Clang that are called from a standard compiler

• Functions defined in a standard compiler are called from HIP-Clang.

• Applications with these interfaces should use the default libstdc++ linking.

Applications that are compiled entirely with hipcc, and which benefit from advanced C++ features
not supported in libstdc++, and which do not require portability to nvcc, may choose to use
libc++.

4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)

The hip_runtime.h and hip_runtime_api.h files define the types, functions and enumerations
needed to compile a HIP program:

• hip_runtime_api.h: defines all the HIP runtime APIs (e.g., hipMalloc) and the types required

to call them. A source file that is only calling HIP APIs but neither defines nor launches

any kernels can include hip_runtime_api.h. hip_runtime_api.h uses no custom hc language

features and can be compiled using a standard C++ compiler.

• hip_runtime.h: included in hip_runtime_api.h. It additionally provides the types and defines

required to create and launch kernels. It can be compiled using a standard C++ compiler,

but will expose a subset of the available functions.

CUDA has slightly different content for these two files. In some cases, you may need to convert
hipified code to include the richer hip_runtime.h instead of hip_runtime_api.h.

4.4.3 Using a Standard C++ Compiler

You can compile hip_runtime_api.h using a standard C or C++ compiler (e.g., gcc or ICC). The
HIP include paths and defines (__HIP_PLATFORM_AMD__ or _HIP_PLATFORM_NVIDIA__)
must pass to the standard compiler; hipconfig then returns the necessary options:

> hipconfig --cxx_config
 -D__HIP_PLATFORM_AMD__ -I/home/user1/hip/include

You can capture the hipconfig output and passed it to the standard compiler; below is a sample
makefile syntax:

CPPFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cpp_config)

HIP Programming Guide 1.0 Rev. 0323 March 2021

70 Transiting from CUDA to HIP Chapter 4

Nvcc includes some headers by default. However, HIP does not include default headers, and
instead, all required files must be explicitly included. Specifically, files that call HIP run-time
APIs or define HIP kernels must explicitly include the appropriate HIP headers. If the compilation
process reports that it cannot find necessary APIs (for example, "error: identifier ‘hipSetDevice’ is
undefined"), ensure that the file includes hip_runtime.h (or hip_runtime_api.h, if appropriate). The
hipify-perl script automatically converts "cuda_runtime.h" to "hip_runtime.h," and it converts
"cuda_runtime_api.h" to "hip_runtime_api.h", but it may miss nested headers or macros.

4.4.3.1 cuda.h

The HIP-Clang path provides an empty cuda.h file. Some existing CUDA programs include this
file but do not require any of the functions.

4.4.4 Choosing HIP File Extensions

Many existing CUDA projects use the ".cu" and ".cuh" file extensions to indicate code that should
be run through the nvcc compiler. For quick HIP ports, leaving these file extensions unchanged is
often easier, as it minimizes the work required to change file names in the directory and #include
statements in the files.

For new projects or ports which can be re-factored, we recommend the use of the extension
".hip.cpp" for source files, and ".hip.h" or ".hip.hpp" for header files. This indicates that the code
is standard C++ code, but also provides a unique indication for make tools to run hipcc when
appropriate.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 71

[AMD Public Use]

4.5 Workarounds
4.5.1 memcpyToSymbol

HIP support for hipMemcpyToSymbol is complete. This feature allows a kernel to define a
device-side data symbol that can be accessed on the host side. The symbol can be in __constant or
device space.

Note that the symbol name needs to be encased in the HIP_SYMBOL macro, as shown in the code
example below. This also applies to hipMemcpyFromSymbol, hipGetSymbolAddress, and
hipGetSymbolSize.

For example, Device Code:

#include<hip/hip_runtime.h>
#include<hip/hip_runtime_api.h>
#include<iostream>
#define HIP_ASSERT(status) \
 assert(status == hipSuccess)
#define LEN 512
#define SIZE 2048
__constant__ int Value[LEN];
__global__ void Get(hipLaunchParm lp, int *Ad)
{
 int tid =threadIdx.x + blockIdx.x *blockDim.x;
 Ad[tid] = Value[tid];
}
int main()
{
 int *A, *B, *Ad;
 A = new int[LEN];
 B = new int[LEN];
 for(unsigned i=0;i<LEN;i++)
 {
 A[i] = -1*i;
 B[i] = 0;
 }
 HIP_ASSERT(hipMalloc((void**)&Ad, SIZE));
 HIP_ASSERT(hipMemcpyToSymbol(HIP_SYMBOL(Value), A, SIZE, 0, hipMemcpyHostToDevice));
 hipLaunchKernel(Get, dim3(1,1,1), dim3(LEN,1,1), 0, 0, Ad);
 HIP_ASSERT(hipMemcpy(B, Ad, SIZE, hipMemcpyDeviceToHost));
 for(unsigned i=0;i<LEN;i++)
 {
 assert(A[i] == B[i]);
 }
 std::cout<<"Passed"<<std::endl;
}

HIP Programming Guide 1.0 Rev. 0323 March 2021

72 Transiting from CUDA to HIP Chapter 4

4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE

To get pointer's memory type in HIP/HIP-Clang one should use hipPointerGetAttributes API. The
first parameter of the API is hipPointerAttribute_t which has 'memoryType' as a member variable.
'memoryType' indicates the input pointer is allocated on device or host.

For example:

double * ptr;
hipMalloc(reinterpret_cast<void**>(&ptr), sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptr); /*attr.memoryType will have value as
hipMemoryTypeDevice*/

double* ptrHost;
hipHostMalloc(&ptrHost, sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptrHost); /*attr.memoryType will have value as
hipMemoryTypeHost*/

4.5.3 threadfence_system

Threadfence_system makes all device memory writes, all writes to mapped host memory, and all
writes to peer memory visible to CPU and other GPU devices. Some implementations can provide
this behavior by flushing the GPU L2 cache. HIP/HIP-Clang does not provide this functionality.
As a workaround, users can set the environment variable HSA_DISABLE_CACHE=1 to disable
the GPU L2 cache. This will affect all accesses and for all kernels and so may have a performance
impact.

4.5.4 Textures and Cache Control

Compute programs sometimes use textures either to access dedicated texture caches or to use the
texture-sampling hardware for interpolation and clamping. The former approach uses simple point
samplers with linear interpolation, essentially only reading a single point. The latter approach uses
the sampler hardware to interpolate and combine multiple samples. AMD hardware, as well as
recent competing hardware, has a unified texture/L1 cache, so it no longer has a dedicated texture
cache. But the nvcc path often caches global loads in the L2 cache, and some programs may
benefit from explicit control of the L1 cache contents. We recommend the __ldg instruction for
this purpose.

AMD compilers currently load all data into both the L1 and L2 caches, so __ldg is treated as a no-
op.

We recommend the following for functional portability:

• For programs that use textures only to benefit from improved caching, use the __ldg

instruction

• Programs that use texture object and reference APIs work well on HIP

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 73

[AMD Public Use]

4.6 More Tips
4.6.1 HIP Logging

On an AMD platform, set the AMD_LOG_LEVEL environment variable to log HIP application
execution information.

For more information about HIP Logging refer to section 3.5 in this document.

4.6.2 Debugging hipcc

To see the detailed commands that hipcc issues, set the environment variable HIPCC_VERBOSE
to 1. Doing so will print to stderr the HIP-clang (or nvcc) commands that hipcc generates.

4.6.3 Editor Highlighting

See the utils/vim or utils/gedit directories to add handy highlighting to hip files.

4.7 HIP Porting Driver API
4.7.1 Porting CUDA Driver API

CUDA provides a separate CUDA Driver and Runtime APIs. The two APIs have significant
overlap in functionality:

• Both APIs support events, streams, memory management, memory copy, and error

handling.

• Both APIs deliver similar performance.

• Driver APIs calls begin with the prefix cu while Runtime APIs begin with the prefix cuda.

For example, the Driver API API contains cuEventCreate while the Runtime API contains

cudaEventCreate, with similar functionality.

• The Driver API defines a different but largely overlapping error code space than the

Runtime API uses a different coding convention. For example, Driver API defines

CUDA_ERROR_INVALID_VALUE while the Runtime API defines cudaErrorInvalidValue

NOTE: The Driver API offers two additional pieces of functionality not provided by the Runtime
API: cuModule and cuCtx APIs.

HIP Programming Guide 1.0 Rev. 0323 March 2021

74 Transiting from CUDA to HIP Chapter 4

4.7.2 cuModule API

The Module section of the Driver API provides additional control over how and when accelerator
code objects are loaded. For example, the driver API allows code objects to be loaded from files or
memory pointers. Symbols for kernels or global data can be extracted from the loaded code
objects. In contrast, the Runtime API automatically loads and (if necessary) compiles all of the
kernels from an executable binary when run. In this mode, NVCC must be used to compile kernel
code so the automatic loading can function correctly.

Both Driver and Runtime APIs define a function for launching kernels (called cuLaunchKernel or
cudaLaunchKernel. The kernel arguments and the execution configuration (grid dimensions, group
dimensions, dynamic shared memory, and stream) are passed as arguments to the launch function.
The Runtime additionally provides the <<< >>> syntax for launching kernels, which resembles a
special function call and is easier to use than explicit launch API (in particular the handling of
kernel arguments). However, this syntax is not standard C++ and is available only when NVCC is
used to compile the host code.

The Module features are useful in an environment that generates the code objects directly, such as
a new accelerator language front-end. Here, NVCC is not used. Instead, the environment may have
a different kernel language or a different compilation flow. Other environments have many kernels
and do not want them to be all loaded automatically. The Module functions can be used to load the
generated code objects and launch kernels. As we will see below, HIP defines a Module API
which provides similar explicit control over code object management.

4.7.3 cuCtx API

The Driver API defines "Context" and "Devices" as separate entities. Contexts contain a single
device, and a device can theoretically have multiple contexts. Each context contains a set of
streams and events specific to the context. Historically contexts also defined a unique address
space for the GPU, though this may no longer be the case in Unified Memory platforms (since the
CPU and all the devices in the same process share a single unified address space). The Context
APIs also provide a mechanism to switch between devices, which allowed a single CPU thread to
send commands to different GPUs. HIP as well as a recent version of CUDA Runtime provide
other mechanisms to accomplish this feat - for example using streams or cudaSetDevice.

The CUDA Runtime API unifies the Context API with the Device API. This simplifies the APIs
and has little loss of functionality since each Context can contain a single device, and the benefits
of multiple contexts have been replaced with other interfaces. HIP provides a context API to
facilitate easy porting from existing Driver codes. In HIP, the Ctx functions largely provide an
alternate syntax for changing the active device. Most new applications will prefer to use
hipSetDevice or the stream APIs , therefore HIP has marked hipCtx APIs as deprecated. Support
for these APIs may not be available in future releases. For more details on deprecated APIs, refer
to HIP deprecated APIs at:

https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md
https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip_deprecated_api_list.md

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 75

[AMD Public Use]

4.7.4 HIP Module and Ctx APIs

Rather than present two separate APIs, HIP extends the HIP API with new APIs for Modules and
Ctx control.

4.7.4.1 hipModule API

Like the CUDA Driver API, the Module API provides additional control over how code is loaded,
including options to load code from files or in-memory pointers. NVCC and HIP-Clang target
different architectures and use different code object formats: NVCC is `cubin` or `ptx` files, while
the HIP-Clang path is the `hsaco` format. The external compilers which generate these code
objects are responsible for generating and loading the correct code object for each platform.
Notably, there is no fat binary format that can contain code for both NVCC and HIP-Clang
platforms. The following table summarizes the formats used on each platform:

Format APIs NVCC HIP-CLANG
Code Object hipModuleLoad, hipModuleLoadData .cubin or PTX text .hsaco
Fat Binary hipModuleLoadFatBin .fatbin .hip_fatbin

`hipcc` uses HIP-Clang or NVCC to compile host codes. Both may embed code objects into the
final executable, and these code objects will be automatically loaded when the application starts.
The hipModule API can be used to load additional code objects, and in this way provides an
extended capability to the automatically loaded code objects. HIP-Clang allows both capabilities
to be used together if desired. It is possible to create a program with no kernels and thus no
automatic loading.

4.7.5 hipCtx API

HIP provides a Ctx API as a thin layer over the existing Device functions. This Ctx API can be
used to set the current context or to query properties of the device associated with the context. The
current context is implicitly used by other APIs such as hipStreamCreate.

4.7.6 hipify translation of CUDA Driver API

The HIPIFY tools convert CUDA Driver APIs for streams, events, modules, devices, memory
management, context, profiler to the equivalent HIP driver calls. For example, cuEventCreate will
be translated into hipEventCreate. HIPIFY tools also convert error codes from the Driver
namespace and coding convention to the equivalent HIP error code. Thus, HIP unifies the APIs for
these common functions. The memory copy API requires additional explanation. The CUDA
driver includes the memory direction in the name of the API (ie cuMemcpyH2D) while the CUDA
driver API provides a single memory copy API with a parameter that specifies the direction and
additionally supports a "default" direction where the runtime determines the direction
automatically. HIP provides APIs with both styles: for example, hipMemcpyH2D as well as
hipMemcpy. The first flavor may be faster in some cases since they avoid host overhead to detect
different memory directions.

HIP defines a single error space and uses camel-case for all errors (i.e. hipErrorInvalidValue)

HIP Programming Guide 1.0 Rev. 0323 March 2021

76 Transiting from CUDA to HIP Chapter 4

4.8 HIP-Clang Implementation Notes
4.8.1 .hip_fatbin

hip-clang links device code from different translation units together. For each device target, a code
object is generated. Code objects for different device targets are bundled by clang-offload-bundler
as one fatbinary, which is embedded as a global symbol __hip_fatbin in the .hip_fatbin section of
the ELF file of the executable or shared object.

4.8.2 Initialization and Termination Functions

HIP-Clang generates initialization and termination functions for each translation unit for the host
code compilation. The initialization functions call __hipRegisterFatBinary to register the fatbinary
embedded in the ELF file. They also call __hipRegisterFunction and __hipRegisterVar to register
kernel functions and device-side global variables. The termination functions call
__hipUnregisterFatBinary. HIP-Clang emits a global variable __hip_gpubin_handle of void**
type with linkonce linkage and initial value 0 for each host translation unit. Each initialization
function checks __hip_gpubin_handle and register the fatbinary only if __hip_gpubin_handle is 0
and saves the return value of __hip_gpubin_handle to __hip_gpubin_handle. This is to guarantee
that the fatbinary is only registered once. A similar check is done in the termination functions.

4.8.3 Kernel Launching

HIP-Clang supports kernel launching by CUDA <<<>>> syntax, hipLaunchKernel, and
hipLaunchKernelGGL. The latter two are macros that expand to CUDA <<<>>> syntax.

When the executable or shared library is loaded by the dynamic linker, the initialization functions
are called. In the initialization functions, when __hipRegisterFatBinary is called, the code objects
containing all kernels are loaded; when __hipRegisterFunction is called, the stub functions are
associated with the corresponding kernels in code objects. HIP-Clang implements two sets of
kernels launching APIs.

By default, in the host code, for the <<<>>> statement, hip-clang first emits call of
hipConfigureCall to set up the threads and grids, then emits call of the stub function with the given
arguments. In the stub function, hipSetupArgument is called for each kernel argument, then
hipLaunchByPtr is called with a function pointer to the stub function. In hipLaunchByPtr, the real
kernel associated with the stub function is launched.

If HIP program is compiled with -fhip-new-launch-api, in the host code, for the <<<>>>
statement, hip-clang first emits call of __hipPushCallConfiguration to save the grid dimension,
block dimension, shared memory usage and stream to a stack, then emits call of the stub function
with the given arguments. In the stub function, __hipPopCallConfiguration is called to get the
saved grid dimension, block dimension, shared memory usage and stream, then hipLaunchKernel
is called with a function pointer to the stub function. In hipLaunchKernel, the real kernel
associated with the stub function is launched.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 77

[AMD Public Use]

4.8.4 Address Spaces

HIP-Clang defines a process-wide address space where the CPU and all devices allocate addresses
from a single unified pool. Thus, addresses may be shared between contexts, and unlike the
original CUDA definition, a new context does not create a new address space for the device.

4.8.5 Using hipModuleLaunchKernel

`hipModuleLaunchKernel` is `cuLaunchKernel` in HIP world. It takes the same arguments as
`cuLaunchKernel`.

4.8.6 Additional Information

HIP-Clang creates a primary context when the HIP API is called. In a pure driver API code, HIP-
Clang will create a primary context while HIP/NVCC will have an empty context stack.
HIP-Clang will push the primary context to the context stack when it is empty. This can have
subtle differences in applications that mix the runtime and driver APIs.

4.9 NVCC Implementation Notes
4.9.1 Interoperation between HIP and CUDA Driver

CUDA applications may want to mix CUDA driver code with HIP code. This table shows the type
equivalence to enable this interaction.

HIP Type CU Driver Type CUDA Runtime Type
hipModule_t CUmodule

hipFunction_t CUfunction

hipCtx_t CUcontext

hipDevice_t CUdevice

hipStream_t CUstream cudaStream_t
hipEvent_t CUevent cudaEvent_t
hipArray CUarray cudaArray

4.9.2 Compilation Options

The hipModule_t interface does not support cuModuleLoadDataEx function, which is used to
control PTX compilation options. HIP-Clang does not use PTX and does not support these
compilation options. HIP-Clang code objects always contain fully compiled ISA and do not
require additional compilation as a part of the load step.

The corresponding HIP function `hipModuleLoadDataEx` behaves as `hipModuleLoadData` on
HIP-Clang path (compilation options are not used) and as `cuModuleLoadDataEx` on NVCC path.

For example,

HIP Programming Guide 1.0 Rev. 0323 March 2021

78 Transiting from CUDA to HIP Chapter 4

CUDA

CUmodule module;
void *imagePtr = ...; // Somehow populate data pointer with code object
const int numOptions = 1;
CUJit_option options[numOptions];
void * optionValues[numOptions];
options[0] = CU_JIT_MAX_REGISTERS;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

cuModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);
CUfunction k;
cuModuleGetFunction(&k, module, "myKernel");

HIP

hipModule_t module;
void *imagePtr = ...; // Somehow populate data pointer with code object
const int numOptions = 1;
hipJitOption options[numOptions];
void * optionValues[numOptions];
options[0] = hipJitOptionMaxRegisters;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);
// hipModuleLoadData(module, imagePtr) will be called on HIP-Clang path, JIT options
will not be used, and
// cupModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues) will be
called on NVCC path
hipModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);
hipFunction_t k;
hipModuleGetFunction(&k, module, "myKernel");

The sample below shows how to use hipModuleGetFunction:

#include<hip_runtime.h>
#include<hip_runtime_api.h>
#include<iostream>
#include<fstream>
#include<vector>
#define LEN 64
#define SIZE LEN<<2
#ifdef __HIP_PLATFORM_HCC__
#define fileName "vcpy_isa.co"
#endif
#ifdef __HIP_PLATFORM_NVCC__
#define fileName "vcpy_isa.ptx"
#endif
#define kernel_name "hello_world"
int main(){
 float *A, *B;
 hipDeviceptr_t Ad, Bd;
 A = new float[LEN];
 B = new float[LEN];
 for(uint32_t i=0;i<LEN;i++){
 A[i] = i*1.0f;
 B[i] = 0.0f;

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 4 Transiting from CUDA to HIP 79

[AMD Public Use]

 std::cout<<A[i] << " "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipInit(0);
 hipDevice_t device;
 hipCtx_t context;
 hipDeviceGet(&device, 0);
 hipCtxCreate(&context, 0, device);
#endif
 hipMalloc((void**)&Ad, SIZE);
 hipMalloc((void**)&Bd, SIZE);
 hipMemcpyHtoD(Ad, A, SIZE);
 hipMemcpyHtoD(Bd, B, SIZE);
 hipModule_t Module;
 hipFunction_t Function;
 hipModuleLoad(&Module, fileName);
 hipModuleGetFunction(&Function, Module, kernel_name);
 std::vector<void*>argBuffer(2);
 memcpy(&argBuffer[0], &Ad, sizeof(void*));
 memcpy(&argBuffer[1], &Bd, sizeof(void*));
 size_t size = argBuffer.size()*sizeof(void*);
 void *config[] = {
 HIP_LAUNCH_PARAM_BUFFER_POINTER, &argBuffer[0],
 HIP_LAUNCH_PARAM_BUFFER_SIZE, &size,
 HIP_LAUNCH_PARAM_END
 };
 hipModuleLaunchKernel(Function, 1, 1, 1, LEN, 1, 1, 0, 0, NULL, (void**)&config);
 hipMemcpyDtoH(B, Bd, SIZE);
 for(uint32_t i=0;i<LEN;i++){
 std::cout<<A[i]<<" - "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipCtxDetach(context);
#endif

 return 0;
}

4.9.3 HIP Module and Texture Driver API

HIP supports texture driver APIs however texture reference should be declared in host scope. The
following code explains the use of texture reference for the HIP_PLATFORM_HCC platform.

// Code to generate code object
#include "hip/hip_runtime.h"
extern texture<float, 2, hipReadModeElementType> tex;
__global__ void tex2dKernel(hipLaunchParm lp, float* outputData,
 int width,
 int height)
{
int x = blockIdx.x*blockDim.x + threadIdx.x;
int y = blockIdx.y*blockDim.y + threadIdx.y;
outputData[y*width + x] = tex2D(tex, x, y);
}

// Host code:
texture<float, 2, hipReadModeElementType> tex;

HIP Programming Guide 1.0 Rev. 0323 March 2021

80 Transiting from CUDA to HIP Chapter 4

void myFunc ()
{
 // ...
 textureReference* texref;
 hipModuleGetTexRef(&texref, Module1, "tex");
 hipTexRefSetAddressMode(texref, 0, hipAddressModeWrap);
 hipTexRefSetAddressMode(texref, 1, hipAddressModeWrap);
 hipTexRefSetFilterMode(texref, hipFilterModePoint);
 hipTexRefSetFlags(texref, 0);
 hipTexRefSetFormat(texref, HIP_AD_FORMAT_FLOAT, 1);
 hipTexRefSetArray(texref, array, HIP_TRSA_OVERRIDE_FORMAT);
 // ...
}

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 5 Appendix A – HIP API 81

[AMD Public Use]

Chapter 5 Appendix A – HIP API

The following appendices are available on the AMD ROCm GitHub documentation website.

5.1 HIP API Guide
You can access the Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.1.pdf

5.2 HIP-Supported CUDA API Reference Guide
The HIP-Supported CUDA API Reference Guide consists of CUDA APIs supported in HIP and
covers the Driver API, Runtime API, cuComplex API, Device API, and APIs for the following
supported libraries:

• cuBLAS

• cuRAND
• cuFFT

• cuSPARSE
• cuDNN

For more information, see

https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP_Supported_CUDA_API_Refere
nce_Guide_v4.1.pdf

5.3 Deprecated HIP APIs
5.3.1 HIP Context Management APIs

CUDA supports cuCtx API, the Driver API that defines "Context" and "Devices" as separate
entities. Contexts contain a single device, and a device can theoretically have multiple contexts.
HIP initially added limited support for APIs to facilitate easy porting from existing driver codes.
The APIs are marked as deprecated now as there is a better alternate interface (such as
hipSetDevice or the stream API) to achieve the required functions.

• hipCtxPopCurrent

• hipCtxPushCurrent

• hipCtxSetCurrent

• hipCtxGetCurrent

• hipCtxGetDevice

• hipCtxGetApiVersion

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.1.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP_Supported_CUDA_API_Reference_Guide_v4.1.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/HIP_Supported_CUDA_API_Reference_Guide_v4.1.pdf

HIP Programming Guide 1.0 Rev. 0323 March 2021

82 Appendix A – HIP API Chapter 5

• hipCtxGetCacheConfig

• hipCtxSetCacheConfig

• hipCtxSetSharedMemConfig

• hipCtxGetSharedMemConfig

• hipCtxSynchronize

• hipCtxGetFlags

• hipCtxEnablePeerAccess

• hipCtxDisablePeerAccess

5.3.2 HIP Memory Management APIs

5.3.2.1 hipMallocHost

Use "hipHostMalloc" instead.

5.3.2.2 hipMemAllocHost

Use "hipHostMalloc" instead.

5.3.2.3 hipHostAlloc

Use "hipHostMalloc" instead.

5.3.2.4 hipFreeHost

Use "hipHostFree" instead.

5.4 Supported HIP Math APIs
You can access the supported HIP Math APIs at:

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip-math-api.md

https://github.com/ROCm-Developer-Tools/HIP/blob/main/docs/markdown/hip-math-api.md

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 83

[AMD Public Use]

Chapter 6 Appendix B – Supported Clang
Options

6.1 Supported Clang Options
Clang version: clang version 12.0.0 927e2776dc0e4bb0119efbc5ea405b7425d7f4ac

Option Support Description

-### Supported Print (but do not run) the commands to run for this compilation
--analyzer-output <value> Supported Static analyzer report output format (html\|plist\|plist-multi-

file\|plist-html\|sarif\|text).
--analyze Supported Run the static analyzer
-arcmt-migrate-emit-errors Unsupported Emit ARC errors even if the migrator can fix them
-arcmt-migrate-report-
output <value>

Unsupported Output path for the plist report

-byteswapio Supported Swap byte-order for unformatted input/output
-B <dir> Supported Add <dir> to search path for binaries and object files used

implicitly
-CC Supported Include comments from within macros in preprocessed output
-cl-denorms-are-zero Supported OpenCL only. Allow denormals to be flushed to zero.
-cl-fast-relaxed-math Supported OpenCL only. Sets -cl-finite-math-only and -cl-unsafe-math-

optimizations, and defines __FAST_RELAXED_MATH__.
-cl-finite-math-only Supported OpenCL only. Allow floating-point optimizations that assume

arguments and results are not NaNs or +-Inf.
-cl-fp32-correctly-rounded-
divide-sqrt

Supported OpenCL only. Specify that single-precision floating-point divide
and sqrt used in the program source are correctly rounded.

-cl-kernel-arg-info Supported OpenCL only. Generate kernel argument metadata.
-cl-mad-enable Supported OpenCL only. Allow use of less precise MAD computations in the

generated binary.
-cl-no-signed-zeros Supported OpenCL only. Allow use of less precise no signed zeros

computations in the generated binary.
-cl-opt-disable Supported OpenCL only. This option disables all optimizations. By default

optimizations are enabled.
-cl-single-precision-
constant

Supported OpenCL only. Treat double-precision floating-point constant as
single precision constant.

-cl-std=<value> Supported OpenCL language standard to compile for.
-cl-strict-aliasing Supported OpenCL only. This option is added for compatibility with

OpenCL 1.0.
-cl-uniform-work-group-
size

Supported OpenCL only. Defines that the global work-size be a multiple of
the work-group size specified to clEnqueueNDRangeKernel

-cl-unsafe-math-
optimizations

Supported OpenCL only. Allow unsafe floating-point optimizations. Also
implies -cl-no-signed-zeros and -cl-mad-enable.

--config <value> Supported Specifies configuration file
--cuda-compile-host-device Supported Compile CUDA code for both host and device (default). Has no

effect on non-CUDA compilations.
--cuda-device-only Supported Compile CUDA code for device only
--cuda-host-only Supported Compile CUDA code for host only. Has no effect on non-CUDA

compilations.

HIP Programming Guide 1.0 Rev. 0323 March 2021

84 Appendix B – Supported Clang Options Chapter 6

Option Support Description
--cuda-include-ptx=<value> Unsupported Include PTX for the following GPU architecture (e.g. sm_35) or

'all'. May be specified more than once.
--cuda-noopt-device-debug Unsupported Enable device-side debug info generation. Disables ptxas

optimizations.
--cuda-path-ignore-env Unsupported Ignore environment variables to detect CUDA installation
--cuda-path=<value> Unsupported CUDA installation path
-cxx-isystem <directory> Supported Add a directory to the C++ SYSTEM include search path
-C Supported Include comments in preprocessed output
-c Supported Only run preprocess, compile, and assemble steps
-dD Supported Print macro definitions in -E mode in addition to normal output
-dependency-dot <value> Supported Filename to write DOT-formatted header dependencies to
-dependency-file <value> Supported Filename (or -) to write dependency output to
-dI Supported Print include directives in -E mode in addition to normal output
-dM Supported Print macro definitions in -E mode instead of normal output
-dsym-dir <dir> Unsupported Directory to output dSYM's (if any) to
-D <macro> Supported =<value> Define <macro> to <value> (or 1 if <value> omitted)
-emit-ast Supported Emit Clang AST files for source inputs
-emit-interface-stubs Supported Generate Interface Stub Files.
-emit-llvm Supported Use the LLVM representation for assembler and object files
-emit-merged-ifs Supported Generate Interface Stub Files, emit merged text not binary.
--emit-static-lib Supported Enable linker job to emit a static library.
-enable-trivial-auto-var-
init-zero-knowing-it-will-
be-removed-from-clang

Supported Trivial automatic variable initialization to zero is only here for
benchmarks, it'll eventually be removed, and I'm OK with that
because I'm only using it to benchmark

-E Supported Only run the preprocessor
-fAAPCSBitfieldLoad Unsupported Follows the AAPCS standard that all volatile bit-field write

generates at least one load. (ARM only).
-faddrsig Supported Emit an address-significance table
-faligned-allocation Supported Enable C++17 aligned allocation functions
-fallow-editor-placeholders Supported Treat editor placeholders as valid source code
-fallow-fortran-gnu-ext Supported Allow Fortran GNU extensions
-fansi-escape-codes Supported Use ANSI escape codes for diagnostics
-fapple-kext Unsupported Use Apple's kernel extensions ABI
-fapple-link-rtlib Unsupported Force linking the clang builtins runtime library
-fapple-pragma-pack Unsupported Enable Apple gcc-compatible #pragma pack handling
-fapplication-extension Unsupported Restrict code to those available for App Extensions
-fbackslash Supported Treat backslash as C-style escape character
-fbasic-block-
sections=<value>

Supported Place each function's basic blocks in unique sections (ELF Only) :
all \| labels \| none \| list=<file>

-fblocks Supported Enable the 'blocks' language feature
-fborland-extensions Unsupported Accept non-standard constructs supported by the Borland

compiler
-fbuild-session-file=<file> Supported Use the last modification time of <file> as the build session

timestamp
-fbuild-session-
timestamp=<time since
Epoch in seconds>

Supported Time when the current build session started

-fbuiltin-module-map Unsupported Load the clang builtins module map file.
-fcall-saved-x10 Unsupported Make the x10 register call-saved (AArch64 only)
-fcall-saved-x11 Unsupported Make the x11 register call-saved (AArch64 only)
-fcall-saved-x12 Unsupported Make the x12 register call-saved (AArch64 only)
-fcall-saved-x13 Unsupported Make the x13 register call-saved (AArch64 only)

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 85

[AMD Public Use]

Option Support Description
-fcall-saved-x14 Unsupported Make the x14 register call-saved (AArch64 only)
-fcall-saved-x15 Unsupported Make the x15 register call-saved (AArch64 only)
-fcall-saved-x18 Unsupported Make the x18 register call-saved (AArch64 only)
-fcall-saved-x8 Unsupported Make the x8 register call-saved (AArch64 only)
-fcall-saved-x9 Unsupported Make the x9 register call-saved (AArch64 only)
-fcf-protection=<value> Unsupported Instrument control-flow architecture protection. Options: return,

branch, full, none.
-fcf-protection Unsupported Enable cf-protection in 'full' mode
-fchar8_t Supported Enable C++ builtin type char8_t
-fclang-abi-
compat=<version>

Supported Attempt to match the ABI of Clang <version>

-fcolor-diagnostics Supported Enable colors in diagnostics
-fcomment-block-
commands=<arg>

Supported Treat each comma separated argument in <arg> as a
documentation comment block command

-fcommon Supported Place uninitialized global variables in a common block
-fcomplete-member-
pointers

Supported Require member pointer base types to be complete if they would
be significant under the Microsoft ABI

-fconvergent-functions Supported Assume functions may be convergent
-fcoroutines-ts Supported Enable support for the C++ Coroutines TS
-fcoverage-mapping Unsupported Generate coverage mapping to enable code coverage analysis
-fcs-profile-
generate=<directory>

Unsupported Generate instrumented code to collect context sensitive execution
counts into <directory>/default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fcs-profile-generate Unsupported Generate instrumented code to collect context-sensitive execution
counts into default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fcuda-approx-
transcendentals

Unsupported Use approximate transcendental functions

-fcuda-flush-denormals-to-
zero

Supported Flush denormal floating-point values to zero in CUDA device
mode.

-fcuda-short-ptr Unsupported Use 32-bit pointers for accessing const/local/shared address
spaces

-fcxx-exceptions Supported Enable C++ exceptions
-fdata-sections Supported Place each data in its section
-fdebug-compilation-dir
<value>

Supported The compilation directory to embed in the debug info.

-fdebug-default-
version=<value>

Supported Default DWARF version to use, if a -g option caused DWARF
debug info to be produced

-fdebug-info-for-profiling Supported Emit extra debug info to make the sample profile more accurate
-fdebug-macro Supported Emit macro debug information
-fdebug-prefix-
map=<value>

Supported remap file source paths in debug info

-fdebug-ranges-base-
address

Supported Use DWARF base address selection entries in .debug_ranges

-fdebug-types-section Supported Place debug types in their section (ELF Only)
-fdeclspec Supported Allow __declspec as a keyword
-fdelayed-template-parsing Supported Parse templated function definitions at the end of the translation

unit
-fdelete-null-pointer-checks Supported Treat usage of null pointers as undefined behavior (default)
-fdiagnostics-absolute-paths Supported Print absolute paths in diagnostics
-fdiagnostics-hotness-
threshold=<number>

Unsupported Prevent optimization remarks from being output if they do not
have at least this profile count

HIP Programming Guide 1.0 Rev. 0323 March 2021

86 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-fdiagnostics-parseable-
fixits

Supported Print fix-its in machine parseable form

-fdiagnostics-print-source-
range-info

Supported Print source range spans in numeric form

-fdiagnostics-show-hotness Unsupported Enable profile hotness information in diagnostic line
-fdiagnostics-show-note-
include-stack

Supported Display include stacks for diagnostic notes

-fdiagnostics-show-option Supported Print option name with mappable diagnostics
-fdiagnostics-show-
template-tree

Supported Print a template comparison tree for differing templates

-fdigraphs Supported Enable alternative token representations '<:', ':>', '<%', '%>', '%:',
'%:%:' (default)

-fdiscard-value-names Supported Discard value names in LLVM IR
-fdollars-in-identifiers Supported Allow '$' in identifiers
-fdouble-square-bracket-
attributes

Supported Enable '[[]]' attributes in all C and C++ language modes

-fdwarf-exceptions Unsupported Use DWARF style exceptions
-feliminate-unused-debug-
types

Supported Do not emit debug info for defined but unused types

-fembed-bitcode-marker Supported Embed placeholder LLVM IR data as a marker
-fembed-bitcode=<option> Supported Embed LLVM bitcode (option: off, all, bitcode, marker)
-fembed-bitcode Supported Embed LLVM IR bitcode as data
-femit-all-decls Supported Emit all declarations, even if unused
-femulated-tls Supported Use emutls functions to access thread_local variables
-fenable-matrix Supported Enable matrix data type and related builtin functions
-fexceptions Supported Enable support for exception handling
-fexperimental-new-
constant-interpreter

Supported Enable the experimental new constant interpreter

-fexperimental-new-pass-
manager

Supported Enables an experimental new pass manager in LLVM.

-fexperimental-relative-
c++-abi-vtables

Supported Use the experimental C++ class ABI for classes with virtual tables

-fexperimental-strict-
floating-point

Supported Enables experimental strict floating point in LLVM.

-ffast-math Supported Allow aggressive, lossy floating-point optimizations
-ffile-prefix-map=<value> Supported remap file source paths in debug info and predefined preprocessor

macros
-ffine-grained-bitfield-
accesses

Supported Use separate accesses for consecutive bitfield runs with legal
widths and alignments.

-ffixed-form Supported Enable fixed-form format for Fortran
-ffixed-point Supported Enable fixed point types
-ffixed-r19 Unsupported Reserve register r19 (Hexagon only)
-ffixed-r9 Unsupported Reserve the r9 register (ARM only)
-ffixed-x10 Unsupported Reserve the x10 register (AArch64/RISC-V only)
-ffixed-x11 Unsupported Reserve the x11 register (AArch64/RISC-V only)
-ffixed-x12 Unsupported Reserve the x12 register (AArch64/RISC-V only)
-ffixed-x13 Unsupported Reserve the x13 register (AArch64/RISC-V only)
-ffixed-x14 Unsupported Reserve the x14 register (AArch64/RISC-V only)
-ffixed-x15 Unsupported Reserve the x15 register (AArch64/RISC-V only)
-ffixed-x16 Unsupported Reserve the x16 register (AArch64/RISC-V only)
-ffixed-x17 Unsupported Reserve the x17 register (AArch64/RISC-V only)
-ffixed-x18 Unsupported Reserve the x18 register (AArch64/RISC-V only)

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 87

[AMD Public Use]

Option Support Description
-ffixed-x19 Unsupported Reserve the x19 register (AArch64/RISC-V only)
-ffixed-x1 Unsupported Reserve the x1 register (AArch64/RISC-V only)
-ffixed-x20 Unsupported Reserve the x20 register (AArch64/RISC-V only)
-ffixed-x21 Unsupported Reserve the x21 register (AArch64/RISC-V only)
-ffixed-x22 Unsupported Reserve the x22 register (AArch64/RISC-V only)
-ffixed-x23 Unsupported Reserve the x23 register (AArch64/RISC-V only)
-ffixed-x24 Unsupported Reserve the x24 register (AArch64/RISC-V only)
-ffixed-x25 Unsupported Reserve the x25 register (AArch64/RISC-V only)
-ffixed-x26 Unsupported Reserve the x26 register (AArch64/RISC-V only)
-ffixed-x27 Unsupported Reserve the x27 register (AArch64/RISC-V only)
-ffixed-x28 Unsupported Reserve the x28 register (AArch64/RISC-V only)
-ffixed-x29 Unsupported Reserve the x29 register (AArch64/RISC-V only)
-ffixed-x2 Unsupported Reserve the x2 register (AArch64/RISC-V only)
-ffixed-x30 Unsupported Reserve the x30 register (AArch64/RISC-V only)
-ffixed-x31 Unsupported Reserve the x31 register (AArch64/RISC-V only)
-ffixed-x3 Unsupported Reserve the x3 register (AArch64/RISC-V only)
-ffixed-x4 Unsupported Reserve the x4 register (AArch64/RISC-V only)
-ffixed-x5 Unsupported Reserve the x5 register (AArch64/RISC-V only)
-ffixed-x6 Unsupported Reserve the x6 register (AArch64/RISC-V only)
-ffixed-x7 Unsupported Reserve the x7 register (AArch64/RISC-V only)
-ffixed-x8 Unsupported Reserve the x8 register (AArch64/RISC-V only)
-ffixed-x9 Unsupported Reserve the x9 register (AArch64/RISC-V only)
-fforce-dwarf-frame Supported Always emit a debug frame section
-fforce-emit-vtables Supported Emits more virtual tables to improve devirtualization
-fforce-enable-int128 Supported Enable support for int128_t type
-ffp-contract=<value> Supported Form fused FP ops (e.g. FMAs): fast (everywhere) \| on

(according to FP_CONTRACT pragma) \| off (never fuse).
Default is 'fast' for CUDA/HIP and 'on' otherwise.

-ffp-exception-
behavior=<value>

Supported Specifies the exception behavior of floating-point operations.

-ffp-model=<value> Supported Controls the semantics of floating-point calculations.
-ffree-form Supported Enable free-form format for Fortran
-ffreestanding Supported Assert that the compilation takes place in a freestanding

environment
-ffunc-args-alias Supported Function argument may alias (equivalent to ansi alias)
-ffunction-sections Supported Place each function in its section
-fglobal-isel Supported Enables the global instruction selector
-fgnu-keywords Supported Allow GNU-extension keywords regardless of a language

standard
-fgnu-runtime Unsupported Generate output compatible with the standard GNU Objective-C

runtime
-fgnu89-inline Unsupported Use the gnu89 inline semantics
-fgnuc-version=<value> Supported Sets various macros to claim compatibility with the given GCC

version (default is 4.2.1)
-fgpu-allow-device-init Supported Allow device-side init function in HIP
-fgpu-rdc Supported Generate relocatable device code, also known as separate

compilation mode
-fhip-new-launch-api Supported Use new kernel launching API for HIP
-fignore-exceptions Supported Enable support for ignoring exception handling constructs
-fimplicit-module-maps Unsupported Implicitly search the file system for module map files.
-finline-functions Supported Inline suitable functions
-finline-hint-functions Supported Inline functions that are (explicitly or implicitly) marked inline

HIP Programming Guide 1.0 Rev. 0323 March 2021

88 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-finstrument-function-
entry-bare

Unsupported Instrument function entry only, after inlining, without arguments
to the instrumentation call

-finstrument-functions-
after-inlining

Unsupported Like -finstrument-functions, but insert the calls after inlining

-finstrument-functions Unsupported Generate calls to instrument function entry and exit
-fintegrated-as Supported Enable the integrated assembler
-fintegrated-cc1 Supported Run cc1 in-process
-fjump-tables Supported Use jump tables for lowering switches
-fkeep-static-consts Supported Keep static const variables if unused
-flax-vector-
conversions=<value>

Supported Enable implicit vector bit-casts

-flto-jobs=<value> Unsupported Controls the backend parallelism of -flto=thin (default of 0 means
the number of threads will be derived from the number of CPUs
detected)

-flto=<value> Unsupported Set LTO mode to either 'full' or 'thin'
-flto Unsupported Enable LTO in 'full' mode
-fmacro-prefix-
map=<value>

Supported remap file source paths in predefined preprocessor macros

-fmath-errno Supported Require math functions to indicate errors by setting errno
-fmax-tokens=<value> Supported Max total number of preprocessed tokens for -Wmax-tokens.
-fmax-type-align=<value> Supported Specify the maximum alignment to enforce on pointers lacking an

explicit alignment
-fmemory-profile Supported Enable heap memory profiling
-fmerge-all-constants Supported Allow merging of constants
-fmessage-length=<value> Supported Format message diagnostics so that they fit within N columns
-fmodule-
file=[<name>=]<file>

Unsupported Specify the mapping of module name to precompiled module file,
or load a module file if name is omitted.

-fmodule-map-file=<file> Unsupported Load this module map file
-fmodule-name=<name> Unsupported Specify the name of the module to build
-fmodules-cache-
path=<directory>

Unsupported Specify the module cache path

-fmodules-decluse Unsupported Require declaration of modules used within a module
-fmodules-disable-
diagnostic-validation

Unsupported Disable validation of the diagnostic options when loading the
module

-fmodules-ignore-
macro=<value>

Unsupported Ignore the definition of the given macro when building and
loading modules

-fmodules-prune-
after=<seconds>

Unsupported Specify the interval (in seconds) after which a module file will be
considered unused

-fmodules-prune-
interval=<seconds>

Unsupported Specify the interval (in seconds) between attempts to prune the
module cache

-fmodules-search-all Unsupported Search even non-imported modules to resolve references
-fmodules-strict-decluse Unsupported Like -fmodules-decluse but requires all headers to be in modules
-fmodules-ts Unsupported Enable support for the C++ Modules TS
-fmodules-user-build-path
<directory>

Unsupported Specify the module user build path

-fmodules-validate-input-
files-content

Supported Validate PCM input files based on content if mtime differs

-fmodules-validate-once-
per-build-session

Unsupported Don't verify input files for the modules if the module has been
successfully validated or loaded during this build session

-fmodules-validate-system-
headers

Supported Validate the system headers that a module depends on when
loading the module

-fmodules Unsupported Enable the 'modules' language feature

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 89

[AMD Public Use]

Option Support Description
-fms-compatibility-
version=<value>

Supported Dot-separated value representing the Microsoft compiler version
number to report in _MSC_VER (0 = don't define it (default))

-fms-compatibility Supported Enable full Microsoft Visual C++ compatibility
-fms-extensions Supported Accept some non-standard constructs supported by the Microsoft

compiler
-fmsc-version=<value> Supported Microsoft compiler version number to report in _MSC_VER (0 =

don't define it (default))
-fnew-alignment=<align> Supported Specifies the largest alignment guaranteed by '::operator

new(size_t)'
-fno-addrsig Supported Don't emit an address-significance table
-fno-allow-fortran-gnu-ext Supported Allow Fortran GNU extensions
-fno-assume-sane-operator-
new

Supported Don't assume that C++'s global operator new can't alias any
pointer

-fno-autolink Supported Disable generation of linker directives for automatic library
linking

-fno-backslash Supported Treat backslash like any other character in character strings
-fno-builtin-<value> Supported Disable implicit builtin knowledge of a specific function
-fno-builtin Supported Disable implicit builtin knowledge of functions
-fno-c++-static-destructors Supported Disable C++ static destructor registration
-fno-char8_t Supported Disable C++ builtin type char8_t
-fno-color-diagnostics Supported Disable colors in diagnostics
-fno-common Supported Compile common globals like normal definitions
-fno-complete-member-
pointers

Supported Do not require member pointer base types to be complete if they
would be significant under the Microsoft ABI

-fno-constant-cfstrings Supported Disable creation of CodeFoundation-type constant strings
-fno-coverage-mapping Supported Disable code coverage analysis
-fno-crash-diagnostics Supported Disable auto-generation of preprocessed source files and a script

for reproduction during a clang crash
-fno-cuda-approx-
transcendentals

Unsupported Don't use approximate transcendental functions

-fno-debug-macro Supported Do not emit macro debug information
-fno-declspec Unsupported Disallow __declspec as a keyword
-fno-delayed-template-
parsing

Supported Disable delayed template parsing

-fno-delete-null-pointer-
checks

Supported Do not treat usage of null pointers as undefined behavior

-fno-diagnostics-fixit-info Supported Do not include fixit information in diagnostics
-fno-digraphs Supported Disallow alternative token representations '<:', ':>', '<%', '%>',

'%:', '%:%:'
-fno-discard-value-names Supported Do not discard value names in LLVM IR
-fno-dollars-in-identifiers Supported Disallow '$' in identifiers
-fno-double-square-
bracket-attributes

Supported Disable '[[]]' attributes in all C and C++ language modes

-fno-elide-constructors Supported Disable C++ copy constructor elision
-fno-elide-type Supported Do not elide types when printing diagnostics
-fno-eliminate-unused-
debug-types

Supported Emit debug info for defined but unused types

-fno-exceptions Supported Disable support for exception handling
-fno-experimental-new-
pass-manager

Supported Disables an experimental new pass manager in LLVM.

-fno-experimental-relative-
c++-abi-vtables

Supported Do not use the experimental C++ class ABI for classes with
virtual tables

HIP Programming Guide 1.0 Rev. 0323 March 2021

90 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-fno-fine-grained-bitfield-
accesses

Supported Use large-integer access for consecutive bitfield runs.

-fno-fixed-form Supported Disable fixed-form format for Fortran
-fno-fixed-point Supported Disable fixed point types
-fno-force-enable-int128 Supported Disable support for int128_t type
-fno-fortran-main Supported Don't link in Fortran main
-fno-free-form Supported Disable free-form format for Fortran
-fno-func-args-alias Supported Function argument may alias (equivalent to ansi alias)
-fno-global-isel Supported Disables the global instruction selector
-fno-gnu-inline-asm Supported Disable GNU style inline asm
-fno-gpu-allow-device-init Supported Don't allow device-side init function in HIP
-fno-hip-new-launch-api Supported Don't use new kernel launching API for HIP
-fno-integrated-as Supported Disable the integrated assembler
-fno-integrated-cc1 Supported Spawn a separate process for each cc1
-fno-jump-tables Supported Do not use jump tables for lowering switches
-fno-keep-static-consts Supported Don't keep static const variables if unused
-fno-lto Supported Disable LTO mode (default)
-fno-memory-profile Supported Disable heap memory profiling
-fno-merge-all-constants Supported Disallow merging of constants
-fno-no-access-control Supported Disable C++ access control
-fno-objc-infer-related-
result-type

Supported do not infer Objective-C related result type based on method
family

-fno-operator-names Supported Do not treat C++ operator name keywords as synonyms for
operators

-fno-pch-codegen Supported Do not generate code for uses of this PCH that assumes an explicit
object file will be built for the PCH

-fno-pch-debuginfo Supported Do not generate debug info for types in an object file built from
this PCH and do not generate them elsewhere

-fno-plt Supported Use GOT indirection instead of PLT to make external function
calls (x86 only)

-fno-preserve-as-comments Supported Do not preserve comments in inline assembly
-fno-profile-generate Supported Disable generation of profile instrumentation.
-fno-profile-instr-generate Supported Disable generation of profile instrumentation.
-fno-profile-instr-use Supported Disable using instrumentation data for profile-guided optimization
-fno-register-global-dtors-
with-atexit

Supported Don't use atexit or __cxa_atexit to register global destructors

-fno-rtlib-add-rpath Supported Do not add -rpath with architecture-specific resource directory to
the linker flags

-fno-rtti-data Supported Disable generation of RTTI data
-fno-rtti Supported Disable generation of rtti information
-fno-sanitize-address-
poison-custom-array-cookie

Supported on
Host only

Disable poisoning array cookies when using custom operator
new[] in AddressSanitizer

-fno-sanitize-address-use-
after-scope

Supported on
Host only

Disable use-after-scope detection in AddressSanitizer

-fno-sanitize-address-use-
odr-indicator

Supported on
Host only

Disable ODR indicator globals

-fno-sanitize-blacklist Supported on
Host only

Don't use blacklist file for sanitizers

-fno-sanitize-cfi-canonical-
jump-tables

Supported on
Host only

Do not make the jump table addresses canonical in the symbol
table

-fno-sanitize-cfi-cross-dso Supported on
Host only

Disable control flow integrity (CFI) checks for cross-DSO calls.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 91

[AMD Public Use]

Option Support Description
-fno-sanitize-
coverage=<value>

Supported on
Host only

Disable specified features of coverage instrumentation for
Sanitizers

-fno-sanitize-memory-
track-origins

Supported on
Host only

Disable origins tracking in MemorySanitizer

-fno-sanitize-memory-use-
after-dtor

Supported on
Host only

Disable use-after-destroy detection in MemorySanitizer

-fno-sanitize-
recover=<value>

Supported on
Host only

Disable recovery for specified sanitizers

-fno-sanitize-stats Supported on
Host only

Disable sanitizer statistics gathering.

-fno-sanitize-thread-
atomics

Supported on
Host only

Disable atomic operations instrumentation in ThreadSanitizer

-fno-sanitize-thread-func-
entry-exit

Supported on
Host only

Disable function entry/exit instrumentation in ThreadSanitizer

-fno-sanitize-thread-
memory-access

Supported on
Host only

Disable memory access instrumentation in ThreadSanitizer

-fno-sanitize-trap=<value> Supported on
Host only

Disable trapping for specified sanitizers

-fno-sanitize-trap Supported on
Host only

Disable trapping for all sanitizers

-fno-short-wchar Supported Force wchar_t to be an unsigned int
-fno-show-column Supported Do not include column number on diagnostics
-fno-show-source-location Supported Do not include source location information with diagnostics
-fno-signed-char Supported char is unsigned
-fno-signed-zeros Supported Allow optimizations that ignore the sign of floating point zeros
-fno-spell-checking Supported Disable spell-checking
-fno-split-machine-
functions

Supported Disable late function splitting using profile information (x86 ELF)

-fno-stack-clash-protection Supported Disable stack clash protection
-fno-stack-protector Supported Disable the use of stack protectors
-fno-standalone-debug Supported Limit debug information produced to reduce size of debug binary
-fno-strict-float-cast-
overflow

Supported Relax language rules and try to match the behavior of the target's
native float-to-int conversion instructions

-fno-strict-return Supported Don't treat control flow paths that fall off the end of a non-void
function as unreachable

-fno-sycl Unsupported Disable SYCL kernels compilation for device
-fno-temp-file Supported Directly create compilation output files. This may lead to

incorrect incremental builds if the compiler crashes
-fno-threadsafe-statics Supported Do not emit code to make initialization of local statics thread safe
-fno-trigraphs Supported Do not process trigraph sequences
-fno-unique-section-names Supported Don't use unique names for text and data sections
-fno-unroll-loops Supported Turn off loop unroller
-fno-use-cxa-atexit Supported Don't use __cxa_atexit for calling destructors
-fno-use-flang-math-libs Supported Use Flang internal runtime math library instead of LLVM math

intrinsics.
-fno-use-init-array Supported Use .ctors/.dtors instead of .init_array/.fini_array
-fno-visibility-inlines-
hidden-static-local-var

Supported Disables -fvisibility-inlines-hidden-static-local-var (this is the
default on non-darwin targets)

-fno-xray-function-index Unsupported Omit function index section at the expense of single-function
patching performance

-fno-zero-initialized-in-bss Supported Don't place zero initialized data in BSS

HIP Programming Guide 1.0 Rev. 0323 March 2021

92 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-fobjc-arc-exceptions Unsupported Use EH-safe code when synthesizing retains and releases in -

fobjc-arc
-fobjc-arc Unsupported Synthesize retain and release calls for Objective-C pointers
-fobjc-exceptions Unsupported Enable Objective-C exceptions
-fobjc-runtime=<value> Unsupported Specify the target Objective-C runtime kind and version
-fobjc-weak Unsupported Enable ARC-style weak references in Objective-C
-fopenmp-simd Unsupported Emit OpenMP code only for SIMD-based constructs.
-fopenmp-targets=<value> Unsupported Specify a comma-separated list of triples OpenMP offloading

targets to be supported
-fopenmp Unsupported Parse OpenMP pragmas and generate parallel code.
-foptimization-record-
file=<file>

Supported Specify the output name of the file containing the optimization
remarks. Implies -fsave-optimization-record. On Darwin
platforms, this cannot be used with multiple -arch <arch> options.

-foptimization-record-
passes=<regex>

Supported Only include passes that match a specified regular expression in
the generated optimization record (by default, include all passes)

-forder-file-instrumentation Supported Generate instrumented code to collect order file into
default.profraw file (overridden by '=' form of option or
LLVM_PROFILE_FILE env var)

-fpack-struct=<value> Unsupported Specify the default maximum struct packing alignment
-fpascal-strings Supported Recognize and construct Pascal-style string literals
-fpass-plugin=<dsopath> Supported Load pass plugin from a dynamic shared object file (only with

new pass manager).
-fpatchable-function-
entry=<N,M>

Supported Generate M NOPs before function entry and N-M NOPs after
function entry

-fpcc-struct-return Unsupported Override the default ABI to return all structs on the stack
-fpch-codegen Supported Generate code for uses of this PCH that assumes an explicit object

file will be built for the PCH
-fpch-debuginfo Supported Generate debug info for types in an object file built from this PCH

and do not generate them elsewhere
-fpch-instantiate-templates Supported Instantiate templates already while building a PCH
-fpch-validate-input-files-
content

Supported Validate PCH input files based on content if mtime differs

-fplugin=<dsopath> Supported Load the named plugin (dynamic shared object)
-fprebuilt-module-
path=<directory>

Unsupported Specify the prebuilt module path

-fprofile-exclude-
files=<value>

Unsupported Instrument only functions from files where names don't match all
the regexes separated by a semi-colon

-fprofile-filter-files=<value> Unsupported Instrument only functions from files where names match any
regex separated by a semi-colon

-fprofile-
generate=<directory>

Unsupported Generate instrumented code to collect execution counts into
<directory>/default.profraw (overridden by
LLVM_PROFILE_FILE env var)

-fprofile-generate Unsupported Generate instrumented code to collect execution counts into
default.profraw (overridden by LLVM_PROFILE_FILE env var)

-fprofile-instr-
generate=<file>

Unsupported Generate instrumented code to collect execution counts into <file>
(overridden by LLVM_PROFILE_FILE env var)

-fprofile-instr-generate Unsupported Generate instrumented code to collect execution counts into
default.profraw file (overridden by '=' form of option or
LLVM_PROFILE_FILE env var)

-fprofile-instr-use=<value> Unsupported Use instrumentation data for profile-guided optimization
-fprofile-remapping-
file=<file>

Unsupported Use the remappings described in <file> to match the profile data
against names in the program

-fprofile-sample-accurate Unsupported Specifies that the sample profile is accurate

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 93

[AMD Public Use]

Option Support Description
-fprofile-sample-
use=<value>

Unsupported Enable sample-based profile guided optimizations

-fprofile-use=<pathname> Unsupported Use instrumentation data for profile-guided optimization. If
pathname is a directory, it reads from
<pathname>/default.profdata. Otherwise, it reads from file
<pathname>.

-freciprocal-math Supported Allow division operations to be reassociated
-freg-struct-return Unsupported Override the default ABI to return small structs in registers
-fregister-global-dtors-
with-atexit

Supported Use atexit or __cxa_atexit to register global destructors

-frelaxed-template-
template-args

Supported Enable C++17 relaxed template argument matching

-freroll-loops Supported Turn on loop reroller
-fropi Unsupported Generate read-only position independent code (ARM only)
-frtlib-add-rpath Supported Add -rpath with architecture-specific resource directory to the

linker flags
-frwpi Unsupported Generate read-write position independent code (ARM only)
-fsanitize-address-field-
padding=<value>

Supported on
Host only

Level of field padding for AddressSanitizer

-fsanitize-address-globals-
dead-stripping

Supported on
Host only

Enable linker dead stripping of globals in AddressSanitizer

-fsanitize-address-poison-
custom-array-cookie

Supported on
Host only

Enable poisoning array cookies when using custom operator
new[] in AddressSanitizer

-fsanitize-address-use-after-
scope

Supported on
Host only

Enable use-after-scope detection in AddressSanitizer

-fsanitize-address-use-odr-
indicator

Supported on
Host only

Enable ODR indicator globals to avoid false ODR violation
reports in partially sanitized programs at the cost of an increase in
binary size

-fsanitize-blacklist=<value> Supported on
Host only

Path to blacklist file for sanitizers

-fsanitize-cfi-canonical-
jump-tables

Supported on
Host only

Make the jump table addresses canonical in the symbol table

-fsanitize-cfi-cross-dso Supported on
Host only

Enable control flow integrity (CFI) checks for cross-DSO calls.

-fsanitize-cfi-icall-
generalize-pointers

Supported on
Host only

Generalize pointers in CFI indirect call type signature checks

-fsanitize-coverage-
allowlist=<value>

Supported on
Host only

Restrict sanitizer coverage instrumentation exclusively to modules
and functions that match the provided special case list, except the
blocked ones

-fsanitize-coverage-
blacklist=<value>

Supported on
Host only

Deprecated, use -fsanitize-coverage-blocklist= instead

-fsanitize-coverage-
blocklist=<value>

Supported on
Host only

Disable sanitizer coverage instrumentation for modules and
functions that match the provided special case list, even the
allowed ones

-fsanitize-coverage-
whitelist=<value>

Supported on
Host only

Deprecated, use -fsanitize-coverage-allowlist= instead

-fsanitize-coverage=<value> Supported on
Host only

Specify the type of coverage instrumentation for Sanitizers

-fsanitize-hwaddress-
abi=<value>

Supported on
Host only

Select the HWAddressSanitizer ABI to target (interceptor or
platform, default interceptor). This option is currently unused.

-fsanitize-memory-track-
origins=<value>

Supported on
Host only

Enable origins tracking in MemorySanitizer

HIP Programming Guide 1.0 Rev. 0323 March 2021

94 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-fsanitize-memory-track-
origins

Supported on
Host only

Enable origins tracking in MemorySanitizer

-fsanitize-memory-use-
after-dtor

Supported on
Host only

Enable use-after-destroy detection in MemorySanitizer

-fsanitize-recover=<value> Supported on
Host only

Enable recovery for specified sanitizers

-fsanitize-stats Supported on
Host only

Enable sanitizer statistics gathering.

-fsanitize-system-
blacklist=<value>

Supported on
Host only

Path to system blacklist file for sanitizers

-fsanitize-thread-atomics Supported on
Host only

Enable atomic operations instrumentation in ThreadSanitizer
(default)

-fsanitize-thread-func-
entry-exit

Supported on
Host only

Enable function entry/exit instrumentation in ThreadSanitizer
(default)

-fsanitize-thread-memory-
access

Supported on
Host only

Enable memory access instrumentation in ThreadSanitizer
(default)

-fsanitize-trap=<value> Supported on
Host only

Enable trapping for specified sanitizers

-fsanitize-trap Supported on
Host only

Enable trapping for all sanitizers

-fsanitize-undefined-strip-
path-
components=<number>

Supported on
Host only

Strip (or keep only, if negative) a given number of path
components when emitting check metadata.

-fsanitize=<check> Supported on
Host only

Turn on runtime checks for various forms of undefined or
suspicious behavior. See user manual for available checks

-fsave-optimization-
record=<format>

Supported Generate an optimization record file in a specific format

-fsave-optimization-record Supported Generate a YAML optimization record file
-fseh-exceptions Supported Use SEH style exceptions
-fshort-enums Supported Allocate to an enum type only as many bytes as it needs for the

declared range of possible values
-fshort-wchar Unsupported Force wchar_t to be a short unsigned int
-fshow-overloads=<value> Supported Which overload candidates to show when overload resolution

fails: best\|all; defaults to all
-fsigned-char Supported char is signed
-fsized-deallocation Supported Enable C++14 sized global deallocation functions
-fsjlj-exceptions Supported Use SjLj style exceptions
-fslp-vectorize Supported Enable the superword-level parallelism vectorization passes
-fsplit-dwarf-inlining Unsupported Provide minimal debug info in the object/executable to facilitate

online symbolication/stack traces in the absence of .dwo/.dwp
files when using Split DWARF

-fsplit-lto-unit Unsupported Enables splitting of the LTO unit
-fsplit-machine-functions Supported Enable late function splitting using profile information (x86 ELF)
-fstack-clash-protection Supported Enable stack clash protection
-fstack-protector-all Unsupported Enable stack protectors for all functions
-fstack-protector-strong Unsupported Enable stack protectors for some functions vulnerable to stack

smashing. Compared to -fstack-protector, this uses a stronger
heuristic that includes functions containing arrays of any size (and
any type), as well as any calls to alloca or the taking of an address
from a local variable

-fstack-protector Unsupported Enable stack protectors for some functions vulnerable to stack
smashing. This uses a loose heuristic that considers functions
vulnerable if they contain a char (or 8bit integer) array or constant

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 95

[AMD Public Use]

Option Support Description
sized calls to alloca , which are of greater size than ssp-buffer-size
(default: 8 bytes). All variable sized calls to alloca are considered
vulnerable. A function with a stack protector has a guard value
added to the stack frame that is checked on function exit. The
guard value must be positioned in the stack frame such that a
buffer overflow from a vulnerable variable will overwrite the
guard value before overwriting the function's return address. The
reference stack guard value is stored in a global variable.

-fstack-size-section Supported Emit section containing metadata on function stack sizes
-fstandalone-debug Supported Emit full debug info for all types used by the program
-fstrict-enums Supported Enable optimizations based on the strict definition of an enum's

value range
-fstrict-float-cast-overflow Supported Assume that overflowing float-to-int casts are undefined (default)
-fstrict-vtable-pointers Supported Enable optimizations based on the strict rules for overwriting

polymorphic C++ objects
-fsycl Unsupported Enable SYCL kernels compilation for device
-fsystem-module u Build this module as a system module. Only used with -emit-

module
-fthin-link-bitcode=<value> Supported Write minimized bitcode to <file> for the ThinLTO thin link only
-fthinlto-index=<value> Unsupported Perform ThinLTO importing using the provided function

summary index
-ftime-trace-
granularity=<value>

Supported Minimum time granularity (in microseconds) traced by time
profiler

-ftime-trace Supported Turn on time profiler. Generates JSON file based on output
filename.

-ftrap-function=<value> Unsupported Issue call to specified function rather than a trap instruction
-ftrapv-handler=<function
name>

Unsupported Specify the function to be called on overflow

-ftrapv Unsupported Trap on integer overflow
-ftrigraphs Supported Process trigraph sequences
-ftrivial-auto-var-init-stop-
after=<value>

Supported Stop initializing trivial automatic stack variables after the
specified number of instances

-ftrivial-auto-var-
init=<value>

Supported Initialize trivial automatic stack variables: uninitialized (default) \|
pattern

-funique-basic-block-
section-names

Supported Use unique names for basic block sections (ELF Only)

-funique-internal-linkage-
names

Supported Uniqueify Internal Linkage Symbol Names by appending the
MD5 hash of the module path

-funroll-loops Supported Turn on loop unroller
-fuse-flang-math-libs Supported Use Flang internal runtime math library instead of LLVM math

intrinsics.
-fuse-line-directives Supported Use #line in preprocessed output
-fvalidate-ast-input-files-
content

Supported Compute and store the hash of input files used to build an AST.
Files with mismatching mtime's are considered valid if both
contents is identical

-fveclib=<value> Unsupported Use the given vector functions library
-fvectorize Unsupported Enable the loop vectorization passes
-fverbose-asm Supported Generate verbose assembly output
-fvirtual-function-
elimination

Supported Enables dead virtual function elimination optimization. Requires -
flto=full

-fvisibility-global-new-
delete-hidden

Supported Give global C++ operator new and delete declarations hidden
visibility

HIP Programming Guide 1.0 Rev. 0323 March 2021

96 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-fvisibility-inlines-hidden-
static-local-var

Supported When -fvisibility-inlines-hidden is enabled, static variables in
inline C++ member functions will also be given hidden visibility
by default

-fvisibility-inlines-hidden Supported Give inline C++ member functions hidden visibility by default
-fvisibility-ms-compat Supported Give global types 'default' visibility and global functions and

variables 'hidden' visibility by default
-fvisibility=<value> Supported Set the default symbol visibility for all global declarations
-fwasm-exceptions Unsupported Use WebAssembly style exceptions
-fwhole-program-vtables Unsupported Enables whole-program vtable optimization. Requires -flto
-fwrapv Supported Treat signed integer overflow as two's complement
-fwritable-strings Supported Store string literals as writable data
-fxray-always-emit-
customevents

Unsupported Always emit __xray_customevent(...) calls even if the containing
function is not always instrumented

-fxray-always-emit-
typedevents

Unsupported Always emit __xray_typedevent(...) calls even if the containing
function is not always instrumented

-fxray-always-instrument=
<value>

Unsupported DEPRECATED: Filename defining the whitelist for imbuing the
'always instrument' XRay attribute.

-fxray-attr-list= <value> Unsupported Filename defining the list of functions/types for imbuing XRay
attributes.

-fxray-ignore-loops Unsupported Don't instrument functions with loops unless they also meet the
minimum function size

-fxray-instruction-
threshold= <value>

Unsupported Sets the minimum function size to instrument with XRay

-fxray-instrumentation-
bundle= <value>

Unsupported Select which XRay instrumentation points to emit. Options: all,
none, function-entry, function-exit, function, custom. Default is
'all'. 'function' includes both 'function-entry' and 'function-exit'.

-fxray-instrument Unsupported Generate XRay instrumentation sleds on function entry and exit
-fxray-link-deps Unsupported Tells clang to add the link dependencies for XRay.
-fxray-modes= <value> Unsupported List of modes to link in by default into XRay instrumented

binaries.
-fxray-never-instrument=
<value>

Unsupported DEPRECATED: Filename defining the whitelist for imbuing the
'never instrument' XRay attribute.

-fzvector Supported Enable System z vector language extension
-F <value> Unsupported Add directory to framework include search path
--gcc-toolchain=<value> Supported Use the gcc toolchain at the given directory
-gcodeview-ghash Supported Emit type record hashes in a .debug$H section
-gcodeview Supported Generate CodeView debug information
-gdwarf-2 Supported Generate source-level debug information with dwarf version 2
-gdwarf-3 Supported Generate source-level debug information with dwarf version 3
-gdwarf-4 Supported Generate source-level debug information with dwarf version 4
-gdwarf-5 Supported Generate source-level debug information with dwarf version 5
-gdwarf Supported Generate source-level debug information with the default dwarf

version
-gembed-source Supported Embed source text in DWARF debug sections
-gline-directives-only Supported Emit debug line info directives only
-gline-tables-only Supported Emit debug line number tables only
-gmodules Supported Generate debug info with external references to clang modules or

precompiled headers
-gno-embed-source Supported Restore the default behavior of not embedding source text in

DWARF debug sections
-gno-inline-line-tables Supported Don't emit inline line tables

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 97

[AMD Public Use]

Option Support Description
--gpu-max-threads-per-
block=<value>

Supported Default max threads per block for kernel launch bounds for HIP

-gsplit-dwarf=<value> Supported Set DWARF fission mode to either 'split' or 'single'
-gz=<value> Supported DWARF debug sections compression type
-gz Supported DWARF debug sections compression type
-G <size> Unsupported Put objects of at most <size> bytes into small data section (MIPS /

Hexagon)
-g Supported Generate source-level debug information
--help-hidden Supported Display help for hidden options
-help Supported Display available options
--hip-device-lib=<value> Supported HIP device library
--hip-link Supported Link clang-offload-bundler bundles for HIP
--hip-version=<value> Supported HIP version in the format of major.minor.patch
-H Supported Show header includes and nesting depth
-I- Supported Restrict all prior -I flags to double-quoted inclusion and remove

the current directory from include path
-ibuiltininc Supported Enable builtin #include directories even when -nostdinc is used

before or after -ibuiltininc. Using -nobuiltininc after the option
disables it

-idirafter <value> Supported Add directory to AFTER include search path
-iframeworkwithsysroot
<directory>

Unsupported Add directory to SYSTEM framework search path, absolute paths
are relative to -isysroot

-iframework <value> Unsupported Add directory to SYSTEM framework search path
-imacros <file> Supported Include macros from file before parsing
-include-pch <file> Supported Include precompiled header file
-include <file> Supported Include file before parsing
-index-header-map Supported Make the next included directory (-I or -F) an indexer header map
-iprefix <dir> Supported Set the -iwithprefix/-iwithprefixbefore prefix
-iquote <directory> Supported Add directory to QUOTE include search path
-isysroot <dir> Supported Set the system root directory (usually /)
-isystem-after <directory> Supported Add directory to end of the SYSTEM include search path
-isystem <directory> Supported Add directory to SYSTEM include search path
-ivfsoverlay <value> Supported Overlay the virtual filesystem described by file over the real file

system
-iwithprefixbefore <dir> Supported Set directory to include search path with prefix
-iwithprefix <dir> Supported Set directory to SYSTEM include search path with prefix
-iwithsysroot <directory> Supported Add directory to SYSTEM include search path, absolute paths are

relative to -isysroot
-I <dir> Supported Add directory to include search path. If there are multiple -I

options, these directories are searched in the order they are given
before the standard system directories are searched. If the same
directory is in the SYSTEM include search paths, for example, if
also specified with -isystem, the -I option will be ignored

--libomptarget-nvptx-
path=<value>

Unsupported Path to libomptarget-nvptx libraries

-L <dir> Supported Add directory to library search path
-mabicalls Unsupported Enable SVR4-style position-independent code (Mips only)
-maix-struct-return Unsupported Return all structs in memory (PPC32 only)
-malign-branch-
boundary=<value>

Supported Specify the boundary's size to align branches

-malign-branch=<value> Supported Specify types of branches to align
-malign-double Supported Align doubles to two words in structs (x86 only)

HIP Programming Guide 1.0 Rev. 0323 March 2021

98 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-Mallocatable=<value> Unsupported Select semantics for assignments to allocatables (F03 or F95)
-mbackchain Unsupported Link stack frames through backchain on System Z
-mbranch-
protection=<value>

Unsupported Enforce targets of indirect branches and function returns

-mbranches-within-32B-
boundaries

Supported Align selected branches (fused, jcc, jmp) within 32-byte boundary

-mcmodel=medany Unsupported Equivalent to -mcmodel=medium, compatible with RISC-V gcc.
-mcmodel=medlow Unsupported Equivalent to -mcmodel=small, compatible with RISC-V gcc.
-mcmse Unsupported Allow use of CMSE (Armv8-M Security Extensions)
-mcode-object-v3 Supported Legacy option to specify code object ABI V2 (-mnocode-object-

v3) or V3 (-mcode-object-v3) (AMDGPU only)
-mcode-object-
version=<version>

Supported Specify code object ABI version. Defaults to 4. (AMDGPU only)

-mcrc Unsupported Allow use of CRC instructions (ARM/Mips only)
-mcumode Supported Specify CU (-mcumode) or WGP (-mno-cumode) wavefront

execution mode (AMDGPU only)
-mdouble=<value> Supported Force double to be 32 bits or 64 bits
-MD Supported Write a depfile containing user and system headers
-meabi <value> Supported Set EABI type, e.g. 4, 5 or gnu (default depends on triple)
-membedded-data Unsupported Place constants in the .rodata section instead of the .sdata section

even if they meet the -G <size> threshold (MIPS)
-menable-experimental-
extensions

Unsupported Enable use of experimental RISC-V extensions.

-mexec-model=<value> Unsupported Execution model (WebAssembly only)
-mexecute-only Unsupported Disallow generation of data access to code sections (ARM only)
-mextern-sdata Unsupported Assume that externally defined data is in the small data if it meets

the -G <size> threshold (MIPS)
-mfentry Unsupported Insert calls to fentry at function entry (x86/SystemZ only)
-mfix-cortex-a53-835769 Unsupported Workaround Cortex-A53 erratum 835769 (AArch64 only)
-mfp32 Unsupported Use 32-bit floating point registers (MIPS only)
-mfp64 Unsupported Use 64-bit floating point registers (MIPS only)
-MF <file> Supported Write depfile output from -MMD, -MD, -MM, or -M to <file>
-mgeneral-regs-only Unsupported Generate code which only uses the general purpose registers

(AArch64 only)
-mglobal-merge Supported Enable merging of globals
-mgpopt Unsupported Use GP relative accesses for symbols known to be in a small data

section (MIPS)
-MG Supported Add missing headers to depfile
-mharden-sls=<value> Unsupported Select straight-line speculation hardening scope
-mhvx-length=<value> Unsupported Set Hexagon Vector Length
-mhvx=<value> Unsupported Enable Hexagon Vector eXtensions
-mhvx Unsupported Enable Hexagon Vector eXtensions
-miamcu Unsupported Use Intel MCU ABI
--migrate Unsupported Run the migrator
-mincremental-linker-
compatible

Supported (integrated-as) Emit an object file that can be used with an
incremental linker

-mindirect-jump=<value> Unsupported Change indirect jump instructions to inhibit speculation
-Minform=<value> Supported Set error level of messages to display
-mios-version-min=<value> Unsupported Set iOS deployment target
-MJ <value> Unsupported Write a compilation database entry per input
-mllvm <value> Supported Additional arguments to forward to LLVM's option processing
-mlocal-sdata Unsupported Extend the -G behavior to object local data (MIPS)

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 99

[AMD Public Use]

Option Support Description
-mlong-calls Supported Generate branches with extended addressability, usually via

indirect jumps.
-mlong-double-128 Supported on

Host only
Force long double to be 128 bits

-mlong-double-64 Supported Force long double to be 64 bits
-mlong-double-80 Supported on

Host only
Force long double to be 80 bits, padded to 128 bits for storage

-mlvi-cfi Supported on
Host only

Enable only control-flow mitigations for Load Value Injection
(LVI)

-mlvi-hardening Supported on
Host only

Enable all mitigations for Load Value Injection (LVI)

-mmacosx-version-
min=<value>

Unsupported Set Mac OS X deployment target

-mmadd4 Supported Enable the generation of 4-operand madd.s, madd.d and related
instructions.

-mmark-bti-property Unsupported Add .note.gnu.property with BTI to assembly files (AArch64
only)

-MMD Supported Write a depfile containing user headers
-mmemops Supported Enable generation of memop instructions
-mms-bitfields Unsupported Set the default structure layout to be compatible with the

Microsoft compiler standard
-mmsa Unsupported Enable MSA ASE (MIPS only)
-mmt Unsupported Enable MT ASE (MIPS only)
-MM Supported Like -MMD, but also implies -E and writes to stdout by default
-mno-abicalls Unsupported Disable SVR4-style position-independent code (Mips only)
-mno-crc Unsupported Disallow use of CRC instructions (Mips only)
-mno-embedded-data Unsupported Do not place constants in the .rodata section instead of the .sdata

if they meet the -G <size> threshold (MIPS)
-mno-execute-only Unsupported Allow generation of data access to code sections (ARM only)
-mno-extern-sdata Unsupported Do not assume that externally defined data is in the small data if it

meets the -G <size> threshold (MIPS)
-mno-fix-cortex-a53-835769 Unsupported Don't workaround Cortex-A53 erratum 835769 (AArch64 only)
-mno-global-merge Supported Disable merging of globals
-mno-gpopt Unsupported Do not use GP relative accesses for symbols known to be in a

small data section (MIPS)
-mno-hvx Unsupported Disable Hexagon Vector eXtensions
-mno-implicit-float Supported Don't generate implicit floating point instructions
-mno-incremental-linker-
compatible

Supported (integrated-as) Emit an object file which cannot be used with an
incremental linker

-mno-local-sdata Unsupported Do not extend the -G behaviour to object local data (MIPS)
-mno-long-calls Supported Restore the default behaviour of not generating long calls
-mno-lvi-cfi Supported on

Host only
Disable control-flow mitigations for Load Value Injection (LVI)

-mno-lvi-hardening Supported on
Host only

Disable mitigations for Load Value Injection (LVI)

-mno-madd4 Supported Disable the generation of 4-operand madd.s, madd.d and related
instructions.

-mno-memops Supported Disable generation of memop instructions
-mno-movt Supported Disallow use of movt/movw pairs (ARM only)
-mno-ms-bitfields Supported Do not set the default structure layout to be compatible with the

Microsoft compiler standard
-mno-msa Unsupported Disable MSA ASE (MIPS only)

HIP Programming Guide 1.0 Rev. 0323 March 2021

100 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-mno-mt Unsupported Disable MT ASE (MIPS only)
-mno-neg-immediates Supported Disallow converting instructions with negative immediates to their

negation or inversion.
-mno-nvj Supported Disable generation of new-value jumps
-mno-nvs Supported Disable generation of new-value stores
-mno-outline Unsupported Disable function outlining (AArch64 only)
-mno-packets Supported Disable generation of instruction packets
-mno-relax Supported Disable linker relaxation
-mno-restrict-it Unsupported Allow generation of deprecated IT blocks for ARMv8. It is off by

default for ARMv8 Thumb mode
-mno-save-restore Unsupported Disable using library calls for save and restore
-mno-seses Unsupported Disable speculative execution side effect suppression (SESES)
-mno-stack-arg-probe Supported Disable stack probes which are enabled by default
-mno-tls-direct-seg-refs Supported Disable direct TLS access through segment registers
-mno-unaligned-access Unsupported Force all memory accesses to be aligned (AArch32/AArch64

only)
-mno-wavefrontsize64 Supported Specify wavefront size 32 mode (AMDGPU only)
-mnocrc Unsupported Disallow use of CRC instructions (ARM only)
-mnop-mcount Supported Generate mcount/__fentry__ calls as nops. To activate they need

to be patched in.
-mnvj Supported Enable generation of new-value jumps
-mnvs Supported Enable generation of new-value stores
-module-dependency-dir
<value>

Unsupported Directory to dump module dependencies to

-module-file-info Unsupported Provide information about a particular module file
-momit-leaf-frame-pointer Supported Omit frame pointer setup for leaf functions
-moutline Unsupported Enable function outlining (AArch64 only)
-mpacked-stack Unsupported Use packed stack layout (SystemZ only).
-mpackets Supported Enable generation of instruction packets
-mpad-max-prefix-
size=<value>

Supported Specify maximum number of prefixes to use for padding

-mpie-copy-relocations Supported Use copy relocations support for PIE builds
-mprefer-vector-
width=<value>

Unsupported Specifies preferred vector width for auto-vectorization. Defaults
to 'none' which allows target specific decisions.

-MP Supported Create phony target for each dependency (other than main file)
-mqdsp6-compat Unsupported Enable hexagon-qdsp6 backward compatibility
-MQ <value> Supported Specify name of main file output to quote in depfile
-mrecord-mcount Supported Generate a __mcount_loc section entry for each __fentry__ call.
-mrelax-all Supported (integrated-as) Relax all machine instructions
-mrelax Supported Enable linker relaxation
-mrestrict-it Unsupported Disallow generation of deprecated IT blocks for ARMv8. It is on

by default for ARMv8 Thumb mode.
-mrtd Unsupported Make StdCall calling convention the default
-msave-restore Unsupported Enable using library calls for save and restore
-mseses Unsupported Enable speculative execution side effect suppression (SESES).

Includes LVI control flow integrity mitigations
-msign-return-
address=<value>

Unsupported Select return address signing scope

-msmall-data-limit=<value> Supported Put global and static data smaller than the limit into a special
section

-msoft-float Supported Use software floating point

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 101

[AMD Public Use]

Option Support Description
-msram-ecc Supported Legacy option to specify SRAM ECC mode (AMDGPU only).

Should use --offload-arch with :sramecc+ instead
-mstack-alignment=<value> Unsupported Set the stack alignment
-mstack-arg-probe Unsupported Enable stack probes
-mstack-probe-
size=<value>

Unsupported Set the stack probe size

-mstackrealign Unsupported Force realign the stack at entry to every function
-msve-vector-bits=<value> Unsupported Specify the size in bits of an SVE vector register. Defaults to the

vector length agnostic value of "scalable". (AArch64 only)
-msvr4-struct-return Unsupported Return small structs in registers (PPC32 only)
-mthread-model <value> Supported The thread model to use, e.g. posix, single (posix by default)
-mtls-direct-seg-refs Supported Enable direct TLS access through segment registers (default)
-mtls-size=<value> Unsupported Specify bit size of immediate TLS offsets (AArch64 ELF only):

12 (for 4KB) \| 24 (for 16MB, default) \| 32 (for 4GB) \| 48 (for
256TB, needs -mcmodel=large)

-mtp=<value> Unsupported Thread pointer access method (AArch32/AArch64 only)
-mtune=<value> Supported on

Host only
Only supported on X86. Otherwise accepted for compatibility
with GCC.

-MT <value> Unsupported Specify name of main file output in depfile
-munaligned-access Unsupported Allow memory accesses to be unaligned (AArch32/AArch64

only)
-MV Supported Use NMake/Jom format for the depfile
-mwavefrontsize64 Supported Specify wavefront size 64 mode (AMDGPU only)
-mxnack Supported Legacy option to specify XNACK mode (AMDGPU only).

Should use --offload-arch with :xnack+ instead
-M Supported Like -MD, but also implies -E and writes to stdout by default
--no-cuda-include-
ptx=<value>

Supported Do not include PTX for the following GPU architecture (e.g.
sm_35) or 'all'. May be specified more than once.

--no-cuda-version-check Supported Don't error out if the detected version of the CUDA install is too
low for the requested CUDA gpu architecture.

-no-flang-libs Supported Do not link against Flang libraries
--no-offload-arch=<value> Supported Remove CUDA/HIP offloading device architecture (e.g. sm_35,

gfx906) from the list of devices to compile for. 'all' resets the list
to its default value.

--no-system-header-
prefix=<prefix>

Supported Treat all #include paths starting with <prefix> as not including a
system header.

-nobuiltininc Supported Disable builtin #include directories
-nogpuinc Supported Do not add CUDA/HIP include paths and include default

CUDA/HIP wrapper header files
-nogpulib Supported Do not link device library for CUDA/HIP device compilation
-nostdinc++ Unsupported Disable standard #include directories for the C++ standard library
-ObjC++ Unsupported Treat source input files as Objective-C++ inputs
-objcmt-atomic-property Unsupported Make migration to 'atomic' properties
-objcmt-migrate-all Unsupported Enable migration to modern ObjC
-objcmt-migrate-annotation Unsupported Enable migration to property and method annotations
-objcmt-migrate-
designated-init

Unsupported Enable migration to infer NS_DESIGNATED_INITIALIZER for
initializer methods

-objcmt-migrate-
instancetype

Unsupported Enable migration to infer instancetype for method result type

-objcmt-migrate-literals Unsupported Enable migration to modern ObjC literals
-objcmt-migrate-ns-macros Unsupported Enable migration to NS_ENUM/NS_OPTIONS macros

HIP Programming Guide 1.0 Rev. 0323 March 2021

102 Appendix B – Supported Clang Options Chapter 6

Option Support Description
-objcmt-migrate-property-
dot-syntax

Unsupported Enable migration of setter/getter messages to property-dot syntax

-objcmt-migrate-property Unsupported Enable migration to modern ObjC property
-objcmt-migrate-protocol-
conformance

Unsupported Enable migration to add protocol conformance on classes

-objcmt-migrate-readonly-
property

Unsupported Enable migration to modern ObjC readonly property

-objcmt-migrate-readwrite-
property

Unsupported Enable migration to modern ObjC readwrite property

-objcmt-migrate-
subscripting

Unsupported Enable migration to modern ObjC subscripting

-objcmt-ns-nonatomic-
iosonly

Unsupported Enable migration to use NS_NONATOMIC_IOSONLY macro
for setting property's 'atomic' attribute

-objcmt-returns-
innerpointer-property

Unsupported Enable migration to annotate property with
NS_RETURNS_INNER_POINTER

-objcmt-whitelist-dir-
path=<value>

Unsupported Only modify files with a filename contained in the provided
directory path

-ObjC Unsupported Treat source input files as Objective-C inputs
--offload-arch=<value> Supported CUDA offloading device architecture (e.g. sm_35), or HIP

offloading target ID in the form of a device architecture followed
by target ID features delimited by a colon. Each target ID feature
is a pre-defined string followed by a plus or minus sign (e.g.
gfx908:xnack+:sramecc-). May be specified more than once.

-o <file> Supported Write output to <file>
-parallel-jobs=<value> Supported Number of parallel jobs
-pg Supported Enable mcount instrumentation
-pipe Supported Use pipes between commands, when possible
--precompile Supported Only precompile the input
-print-effective-triple Supported Print the effective target triple
-print-file-name=<file> Supported Print the full library path of <file>
-print-ivar-layout Unsupported Enable Objective-C Ivar layout bitmap print trace
-print-libgcc-file-name Supported Print the library path for the currently used compiler runtime

library ("libgcc.a" or "libclang_rt.builtins.*.a")
-print-prog-name=<name> Supported Print the full program path of <name>
-print-resource-dir Supported Print the resource directory pathname
-print-search-dirs Supported Print the paths used for finding libraries and programs
-print-supported-cpus Supported Print supported cpu models for the given target (if target is not

specified, it will print the supported cpus for the default target)
-print-target-triple Supported Print the normalized target triple
-print-targets Supported Print the registered targets
-pthread Supported Support POSIX threads in generated code
--ptxas-path=<value> Unsupported Path to ptxas (used for compiling CUDA code)
-P Supported Disable linemarker output in -E mode
-Qn Supported Do not emit metadata containing compiler name and version
-Qunused-arguments Supported Don't emit warning for unused driver arguments
-Qy Supported Emit metadata containing compiler name and version
-relocatable-pch Supported Whether to build a relocatable precompiled header
-rewrite-legacy-objc Unsupported Rewrite Legacy Objective-C source to C++
-rewrite-objc Unsupported Rewrite Objective-C source to C++
--rocm-device-lib-
path=<value>

Supported ROCm device library path. Alternative to rocm-path.

1.0 Rev. 0323 March 2021 HIP Programming Guide

 Chapter 6 Appendix B – Supported Clang Options 103

[AMD Public Use]

Option Support Description
--rocm-path=<value> Supported ROCm installation path, used for finding and automatically

linking required bitcode libraries.
-Rpass-analysis=<value> Supported Report transformation analysis from optimization passes whose

name matches the given POSIX regular expression
-Rpass-missed=<value> Supported Report missed transformations by optimization passes whose

name matches the given POSIX regular expression
-Rpass=<value> Supported Report transformations performed by optimization passes whose

name matches the given POSIX regular expression
-rtlib=<value> Unsupported Compiler runtime library to use
-R<remark> Unsupported Enable the specified remark
-save-stats=<value> Supported Save llvm statistics.
-save-stats Supported Save llvm statistics.
-save-temps=<value> Supported Save intermediate compilation results.
-save-temps Supported Save intermediate compilation results
-serialize-diagnostics
<value>

Supported Serialize compiler diagnostics to a file

-shared-libsan Unsupported Dynamically link the sanitizer runtime
-static-flang-libs Supported Link using static Flang libraries
-static-libsan Unsupported Statically link the sanitizer runtime
-static-openmp Supported Use the static host OpenMP runtime while linking.
-std=<value> Supported Language standard to compile for
-stdlib++-isystem
<directory>

Supported Use directory as the C++ standard library include path

-stdlib=<value> Supported C++ standard library to use
-sycl-std=<value> Unsupported SYCL language standard to compile for.
--system-header-
prefix=<prefix>

Supported Treat all #include paths starting with <prefix> as including a
system header.

-S Supported Only run preprocess and compilation steps
--target=<value> Supported Generate code for the given target
-Tbss <addr> Supported Set starting address of BSS to <addr>
-Tdata <addr> Supported Set starting address of DATA to <addr>
-time Supported Time individual commands
-traditional-cpp Unsupported Enable some traditional CPP emulation
-trigraphs Supported Process trigraph sequences
-Ttext <addr> Supported Set starting address of TEXT to <addr>
-T <script> Unsupported Specify <script> as linker script
-undef Supported undef all system defines
-unwindlib=<value> Supported Unwind library to use
-U <macro> Supported Undefine macro <macro>
--verify-debug-info Supported Verify the binary representation of debug output
-verify-pch Unsupported Load and verify that a pre-compiled header file is not stale
--version Supported Print version information
-v Supported Show commands to run and use verbose output
-Wa,<arg> Supported Pass the comma separated arguments in <arg> to the assembler
-Wdeprecated Supported Enable warnings for deprecated constructs and define

__DEPRECATED
-Wl,<arg> Supported Pass the comma separated arguments in <arg> to the linker
-working-directory <value> Supported Resolve file paths relative to the specified directory
-Wp,<arg> Supported Pass the comma separated arguments in <arg> to the preprocessor
-W<warning> Supported Enable the specified warning
-w Supported Suppress all warnings
-Xanalyzer <arg> Supported Pass <arg> to the static analyzer

HIP Programming Guide 1.0 Rev. 0323 March 2021

104 Appendix C Chapter 7

Option Support Description
-Xarch_device <arg> Supported Pass <arg> to the CUDA/HIP device compilation
-Xarch_host <arg> Supported Pass <arg> to the CUDA/HIP host compilation
-Xassembler <arg> Supported Pass <arg> to the assembler
-Xclang <arg> Supported Pass <arg> to the clang compiler
-Xcuda-fatbinary <arg> Supported Pass <arg> to fatbinary invocation
-Xcuda-ptxas <arg> Supported Pass <arg> to the ptxas assembler
-Xlinker <arg> Supported Pass <arg> to the linker
-Xopenmp-target=<triple>
<arg>

Supported Pass <arg> to the target offloading toolchain identified by
<triple>.

-Xopenmp-target <arg> Supported Pass <arg> to the target offloading toolchain.
-Xpreprocessor <arg> Supported Pass <arg> to the preprocessor
-x <language> Supported Treat subsequent input files as having type <language>
-z <arg> Supported Pass -z <arg> to the linker

Chapter 7 Appendix C

7.1 HIP FAQ
You can access the HIP FAQ at:

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

	AMD ROCm™
	HIP Programming Guide
	Chapter 1 Introduction
	1.1 Features
	1.2 Accessing HIP
	1.2.1 Release Tagging

	1.3 HIP Portability and Compiler Technology

	Chapter 2 Installing HIP
	2.1 Installing Pre-built Packages
	2.2 Prerequisites
	2.3 AMD Platform
	2.4 NVIDIA Platform
	2.5 Default paths and environment variables
	2.6 Building HIP from Source
	2.6.1 Build ROCclr
	2.6.2 Build HIP
	2.6.3 Default paths and environment variables

	2.7 Verifying HIP Installation

	Chapter 3 Programming with HIP
	3.1 HIP Terminology
	3.2 Getting Started with HIP API
	3.2.1 HIP API Overview
	3.2.2 HIP API Examples
	3.2.2.1 Example 1
	3.2.2.2 Example 2
	3.2.2.3 More HIP Examples

	3.3 Introduction to Memory Allocation
	3.3.1 Host Memory
	3.3.2 Memory allocation flags
	3.3.3 Coherency Controls
	3.3.4 Visibility of Zero-Copy Host Memory
	3.3.4.1 hipEventSynchronize
	3.3.4.2 Device-Side Malloc
	3.3.4.3 Use of Long Double Type
	3.3.4.4 FMA and Contractions
	3.3.4.5 Creating Static Libraries

	3.4 HIP Kernel Language
	3.4.1 Function-Type Qualifiers
	3.4.1.1 __device__
	3.4.1.2 __global__
	3.4.1.3 __host__
	3.4.1.4 Calling __global__ Functions
	3.4.1.5 Kernel-Launch Example

	3.4.2 Variable-Type Qualifiers
	3.4.2.1 __constant__
	3.4.2.2 __shared__
	3.4.2.3 __managed__
	3.4.2.4 __restrict__

	3.4.3 Built-In Variables
	3.4.3.1 Coordinate Built-Ins
	3.4.3.2 warpSize

	3.4.4 Vector Types
	3.4.4.1 Short Vector Types
	3.4.4.2 dim3

	3.4.5 Memory-Fence Instructions
	3.4.6 Synchronization Functions
	3.4.7 Math Functions
	3.4.7.1 Single Precision Mathematical Functions
	3.4.7.2 Double Precision Mathematical Functions
	3.4.7.3 Integer Intrinsics
	3.4.7.4 Floating-point Intrinsics
	3.4.7.5 Texture Functions
	3.4.7.6 Surface Functions
	3.4.7.7 Timer Functions
	3.4.7.8 Atomic Functions
	3.4.7.9 Warp Cross-Lane Functions
	3.4.7.10 Warp Vote and Ballot Functions
	3.4.7.11 Warp Shuffle Functions
	3.4.7.12 Cooperative Groups Functions
	3.4.7.13 Warp Matrix Functions
	3.4.7.14 Independent Thread Scheduling
	3.4.7.15 Profiler Counter Function
	3.4.7.16 Assert
	3.4.7.17 Printf

	3.4.8 Device-Side Dynamic Global Memory Allocation
	3.4.9 __launch_bounds__
	3.4.9.1 Compiler Impact
	3.4.9.2 CU and EU Definitions
	3.4.9.3 Porting from CUDA __launch_bounds
	3.4.9.4 Maxregcount

	3.4.10 Register Keyword
	3.4.11 Pragma Unroll
	3.4.12 In-Line Assembly
	3.4.13 C++ Support
	3.4.14 Kernel Compilation
	3.4.15 gfx-arch-specific-kernel

	3.5 ROCm Code Object Tooling
	3.5.1 Uniform Resource Identifier Syntax
	3.5.1.1 Examples

	3.5.2 List Available ROCm Code Objects
	3.5.3 ROCm Code Objects Extraction
	3.5.4 ROCm Code Object Tooling Examples
	3.5.4.1 Dump all code objects to current directory
	3.5.4.2 Dump the ISA for a specific target: e.g gfx906
	3.5.4.3 Check the e_flags for the gfx908 code object
	3.5.4.4 Disassemble the fourth code object
	3.5.4.5 Sort embedded code objects by size
	3.5.4.6 Compare disassembly of gfx803 and gfx900 code objects

	3.6 HIP Logging
	3.6.1 HIP Logging Level
	3.6.2 HIP Logging Mask
	3.6.3 HIP Logging Command
	3.6.4 HIP Logging Example
	3.6.5 HIP Logging Tips

	Chapter 4 Transiting from CUDA to HIP
	4.1 Transition Tool: HIPIFY
	4.1.1 Sample and Practice

	4.2 HIP Porting Process
	4.2.1 Porting a New CUDA Project
	4.2.1.1 General Tips
	4.2.1.2 Scanning existing CUDA code to scope the porting effort
	4.2.1.3 Converting a project in-place
	4.2.1.4 Library Equivalents

	4.2.2 Distinguishing Compiler Modes
	4.2.2.1 Identifying HIP Target Platform
	4.2.2.2 Identifying the Compiler: HIP-Clang or NVIDIA
	4.2.2.3 Identifying Current Compilation Pass: Host or Device

	4.2.3 Compiler Defines: Summary

	4.3 Identifying Architecture Features
	4.3.1 HIP_ARCH Defines
	4.3.2 Device-Architecture Properties
	4.3.3 Table of Architecture Properties
	4.3.4 Finding HIP
	4.3.5 Identifying HIP Runtime
	4.3.6 hipLaunchKernel
	4.3.7 Compiler Options
	4.3.7.1 Compiler Options Supported on AMD Platforms
	4.3.7.2 Option for specifying GPU processor

	4.3.8 Linking Issues
	4.3.8.1 Linking with hipcc

	4.4 Linking Code with Other Compilers
	4.4.1 libc++ and libstdc++
	4.4.2 HIP Headers (hip_runtime.h, hip_runtime_api.h)
	4.4.3 Using a Standard C++ Compiler
	4.4.3.1 cuda.h

	4.4.4 Choosing HIP File Extensions

	4.5 Workarounds
	4.5.1 memcpyToSymbol
	4.5.2 CU_POINTER_ATTRIBUTE_MEMORY_TYPE
	4.5.3 threadfence_system
	4.5.4 Textures and Cache Control

	4.6 More Tips
	4.6.1 HIP Logging
	4.6.2 Debugging hipcc
	4.6.3 Editor Highlighting

	4.7 HIP Porting Driver API
	4.7.1 Porting CUDA Driver API
	4.7.2 cuModule API
	4.7.3 cuCtx API
	4.7.4 HIP Module and Ctx APIs
	4.7.4.1 hipModule API

	4.7.5 hipCtx API
	4.7.6 hipify translation of CUDA Driver API

	4.8 HIP-Clang Implementation Notes
	4.8.1 .hip_fatbin
	4.8.2 Initialization and Termination Functions
	4.8.3 Kernel Launching
	4.8.4 Address Spaces
	4.8.5 Using hipModuleLaunchKernel
	4.8.6 Additional Information

	4.9 NVCC Implementation Notes
	4.9.1 Interoperation between HIP and CUDA Driver
	4.9.2 Compilation Options
	4.9.3 HIP Module and Texture Driver API

	Chapter 5 Appendix A – HIP API
	5.1 HIP API Guide
	5.2 HIP-Supported CUDA API Reference Guide
	5.3 Deprecated HIP APIs
	5.3.1 HIP Context Management APIs
	5.3.2 HIP Memory Management APIs
	5.3.2.1 hipMallocHost
	5.3.2.2 hipMemAllocHost
	5.3.2.3 hipHostAlloc
	5.3.2.4 hipFreeHost

	5.4 Supported HIP Math APIs

	Chapter 6 Appendix B – Supported Clang Options
	6.1 Supported Clang Options

	Chapter 7 Appendix C
	7.1 HIP FAQ

