mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
The initial code merge of Nvidia Hopper features support. Please be aware that the code merge is not finished yet and the trouble-shooting is still ongoing. The new hardware features (GMMA, TMA, STMATRIX etc.) and automatic warp-specialization are experimental for now and turned off by default. It is recommended for a trial when version 3.0 is released. The work is contributed by: ben-zhang-609, bealwang, donproc, qliu93, jsh20, allatit23, LyricZhao, ivanyinwz, goostavz & yangjunpro from Nvidia, in cooperation with: ptillet, Jokeren, ThomasRaoux & zahimoud from OpenAI. Co-authored-by: Goostav Zhu <gzhu@nvidia.com>
105 lines
3.8 KiB
C++
105 lines
3.8 KiB
C++
/*
|
|
* Copyright (c) 2023 NVIDIA Corporation & Affiliates. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files
|
|
* (the "Software"), to deal in the Software without restriction,
|
|
* including without limitation the rights to use, copy, modify, merge,
|
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "TensorPtrOpsToLLVM.h"
|
|
using namespace mlir;
|
|
using namespace mlir::triton;
|
|
|
|
struct MakeTensorPtrOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::MakeTensorPtrOp> {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::MakeTensorPtrOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::MakeTensorPtrOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
// struct { offset0, offset1, shape0, shape1, stride0,
|
|
// stride1, base_ptr};
|
|
auto offsets = adaptor.getOffsets();
|
|
auto shapes = adaptor.getShape();
|
|
auto strides = adaptor.getStrides();
|
|
auto base = adaptor.getBase();
|
|
auto result = op.getResult();
|
|
|
|
SmallVector<Value> elems;
|
|
for (auto offset : offsets)
|
|
elems.push_back(offset);
|
|
for (auto shape : shapes)
|
|
elems.push_back(shape);
|
|
for (auto stride : strides)
|
|
elems.push_back(stride);
|
|
|
|
elems.push_back(base);
|
|
|
|
auto newValue = getTypeConverter()->packLLElements(
|
|
op.getLoc(), elems, rewriter, result.getType());
|
|
rewriter.replaceOp(op, newValue);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct AdvanceOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::AdvanceOp> {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::AdvanceOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::AdvanceOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// struct { offset0, offset1, shape0, shape1, stride0,
|
|
// stride1, base_ptr};
|
|
auto loc = op.getLoc();
|
|
auto ptrType = op.getPtr().getType();
|
|
auto tensorPtr = adaptor.getPtr();
|
|
|
|
auto offsets = adaptor.getOffsets();
|
|
auto elems =
|
|
getTypeConverter()->unpackLLElements(loc, tensorPtr, rewriter, ptrType);
|
|
|
|
SmallVector<Value, 2> newOffsets;
|
|
|
|
for (auto [offset, oldOffset] : llvm::zip_first(offsets, elems)) {
|
|
newOffsets.push_back((add(offset, oldOffset)));
|
|
}
|
|
|
|
for (size_t i = 0; i < newOffsets.size(); ++i) {
|
|
elems[i] = newOffsets[i];
|
|
}
|
|
|
|
auto newValue = getTypeConverter()->packLLElements(op.getLoc(), elems,
|
|
rewriter, ptrType);
|
|
rewriter.replaceOp(op, newValue);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void populateTensorPtrOpsToLLVMPatterns(
|
|
TritonGPUToLLVMTypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
int numWarps, ModuleAxisInfoAnalysis &axisInfoAnalysis,
|
|
ModuleAllocation &allocation, PatternBenefit benefit) {
|
|
patterns.add<MakeTensorPtrOpConversion>(typeConverter, benefit);
|
|
patterns.add<AdvanceOpConversion>(typeConverter, benefit);
|
|
return;
|
|
}
|