Files
ROCm/python/perf-kernels/flash-attention-seqlen-padded.py
2023-12-04 10:11:41 -06:00

791 lines
29 KiB
Python

"""
Fused Attention
===============
This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf)
Credits: OpenAI kernel team
This kernel supports arbitrarily sized sequence lengths.
Extra Credits:
- Original flash attention paper (https://arxiv.org/abs/2205.14135)
- Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf)
"""
import pytest
import torch
import triton
import triton.language as tl
torch_dtype:tl.constexpr = torch.float16
TORCH_HAS_FP8E5 = hasattr(torch, 'float8_e5m2fnuz')
if TORCH_HAS_FP8E5:
torch_dtype:tl.constexpr = torch.float8_e5m2fnuz
@triton.jit
def _attn_fwd_inner(
acc, l_i, m_i, q,
K_block_ptr, V_block_ptr,
start_m,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
STAGE: tl.constexpr,
offs_m: tl.constexpr,
offs_n: tl.constexpr,
N_CTX,
pre_load_v: tl.constexpr,
padded_block: tl.constexpr,
total_tokens: tl.constexpr,
):
# range of values handled by this stage
if STAGE == 1:
lo, hi = 0, start_m * BLOCK_M
elif STAGE == 2:
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
lo = tl.multiple_of(lo, BLOCK_M)
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# N_CTX is the seqlen to the nearest block (round down).
# So here, we are computing the elements for that last irregular block.
# In the loop, we will mask the elements of BLOCK_N that do not exist.
elif padded_block:
lo, hi = N_CTX, N_CTX + BLOCK_N
lo = tl.multiple_of(lo, BLOCK_N)
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
# causal = False
else:
lo, hi = 0, N_CTX
# loop over k, v and update accumulator
for start_n in range(lo, hi, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# For padded blocks, we will overrun the tensor size if
# we load all BLOCK_N. For others, the blocks are all within range.
if padded_block:
k = tl.load(K_block_ptr, boundary_check=(1,), padding_option="zero")
else:
k = tl.load(K_block_ptr)
if pre_load_v:
if padded_block:
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option="zero")
else:
v = tl.load(V_block_ptr)
# -- compute qk ----
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
if STAGE == 2:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = tl.where(mask, qk, float("-inf"))
if padded_block:
boundary = tl.full([BLOCK_M], total_tokens, dtype=tl.float32)
mask = (start_n + offs_n[None,:]) < boundary[:,None]
qk = tl.where(mask, qk, float("-inf"))
qk += tl.dot(q, k)
m_ij = tl.maximum(m_i, tl.max(qk, 1))
qk = qk - m_ij[:, None]
p = tl.math.exp2(qk)
# -- update output accumulator --
alpha = tl.math.exp2(m_i - m_ij)
acc = acc * alpha[:, None]
if not pre_load_v:
if padded_block:
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option="zero")
else:
v = tl.load(V_block_ptr)
acc += tl.dot(p.to(v.dtype), v)
# -- update m_i and l_i
l_ij = tl.sum(p, 1)
l_i = l_i * alpha + l_ij
# update m_i and l_i
m_i = m_ij
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
return acc, l_i, m_i
@triton.jit
def _attn_fwd(
Q, K, V, sm_scale, M, Out,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn,
stride_oz, stride_oh, stride_om, stride_on,
Z, H,
N_CTX,
BLOCK_DMODEL: tl.constexpr,
STAGE: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
pre_load_v: tl.constexpr,
need_padding: tl.constexpr,
extra_tokens_n: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
qvk_offset = off_hz * stride_qh
# block pointers
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_vk, stride_vn),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1),
)
O_block_ptr = tl.make_block_ptr(
base=Out + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0),
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout on NV GPUs but in VGPRs on AMD GPUs
q = tl.load(Q_block_ptr, boundary_check=(0,1), padding_option="zero")
q = (q * qk_scale).to(q.dtype)
# stage 1: off-band
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
if STAGE & 1:
# We don't currently support causal masking and padding.
tl.static_assert((STAGE != 3) or not need_padding)
# equal to N_CTX if N_CTX is already a multiple of block_M
seqlen_aligned = N_CTX - extra_tokens_n
if N_CTX >= BLOCK_N:
acc, l_i, m_i = _attn_fwd_inner(
acc, l_i, m_i, q, K_block_ptr, V_block_ptr,
start_m,
BLOCK_M, BLOCK_DMODEL, BLOCK_N,
4 - STAGE, offs_m, offs_n,
seqlen_aligned, pre_load_v,
False, seqlen_aligned
)
tl.debug_barrier()
if need_padding:
if N_CTX < BLOCK_N:
seqlen_aligned = 0
acc, l_i, m_i = _attn_fwd_inner(
acc, l_i, m_i, q, K_block_ptr, V_block_ptr,
start_m,
BLOCK_M, BLOCK_DMODEL, BLOCK_N,
4 - STAGE, offs_m, offs_n,
seqlen_aligned, pre_load_v,
True, N_CTX,
)
# stage 2: on-band
if STAGE & 2:
# barrier makes it easier for compielr to schedule the
# two loops independently
tl.debug_barrier()
acc, l_i, m_i = _attn_fwd_inner(
acc, l_i, m_i, q, K_block_ptr, V_block_ptr,
start_m,
BLOCK_M, BLOCK_DMODEL, BLOCK_N,
2, offs_m, offs_n,
N_CTX, pre_load_v,
)
# epilogue
# write back m
acc = acc / l_i[:, None]
m_ptrs = M + off_hz * N_CTX + offs_m
# Check for last block_M
overflow_size = (start_m * BLOCK_M) - N_CTX
if overflow_size > 0:
boundary = tl.full((BLOCK_M,), overflow_size, dtype=tl.float32)
# This is a > check because mask being 0 blocks the store.
m_ptrs_mask = boundary > tl.arange(0, BLOCK_M)
tl.store(m_ptrs, m_i + tl.math.log2(l_i))
else:
tl.store(m_ptrs, m_i + tl.math.log2(l_i))
tl.store(O_block_ptr, acc.to(Out.type.element_ty), boundary_check=(0,1))
@triton.jit
def _attn_bwd_preprocess(O, DO, #
NewDO, Delta, #
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr, #
):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_n = tl.arange(0, D_HEAD)
# load
o = tl.load(O + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
delta = tl.sum(o * do, axis=1)
# write-back
tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do)
tl.store(Delta + off_m, delta)
@triton.jit
def _bwd_kernel_dk_dv(
Q, K, V, sm_scale, Out, DO,
DK, DV,
L,
D,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn,
Z, H, N_CTX,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
# Q is consumed depending on block ID. Every block uses
# previous block offset by BLOCK_M x D_HEAD.
qvk_offset = off_hz * stride_qh
qdo_offset = qvk_offset + start_m * BLOCK_M * stride_qm
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
# Initialize pointers to Q, K, V
Q_block_ptr = tl.make_block_ptr(
base=Q + qdo_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, start_m * BLOCK_M),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_vn, stride_vk),
offsets=(0, start_m * BLOCK_M),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
DO_block_ptr = tl.make_block_ptr(
base=DO + qdo_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
# pointer to row-wise quantities in value-like data
D_ptrs = D + off_hz * N_CTX
l_ptrs = L + off_hz * N_CTX
qk_scale = sm_scale * 1.44269504
# load k and v: they will stay in SRAM throughout
k = tl.load(K_block_ptr)
k = (k * qk_scale).to(k.dtype)
v = tl.load(V_block_ptr)
dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# This lower loop bound is because of the causal mask. We create a lower triangular
# result. The upper triangular is -inf (becomes 0 when we do e^x). As such, it can
# be ignored in the GEMM.
lo = start_m * BLOCK_M
hi = N_CTX
# loop over q, do
for start_n in range(lo, hi, BLOCK_N):
offs_m_curr = offs_n[:, None] + start_n
# -- load q, do --
q = tl.load(Q_block_ptr)
do = tl.load(DO_block_ptr)
# -- compute qk ----
qk = tl.dot(q, k)
qk = tl.where(offs_m_curr >= offs_m[None, :], qk, float("-inf"))
l_i = tl.load(l_ptrs + offs_m_curr)
p = tl.math.exp2(qk - l_i)
# -- compute dv ----
dv += tl.dot(tl.trans(p.to(do.dtype)), do)
# compute dp = dot(v, do)
Di = tl.load(D_ptrs + offs_m_curr)
dp = tl.zeros([BLOCK_N, BLOCK_M], dtype=tl.float32) - Di
dp += tl.dot(do, v)
# compute ds = p * (dp - delta[:, None])
ds = p * dp
# compute dk
dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q)
# update pointers
Q_block_ptr = tl.advance(Q_block_ptr, (BLOCK_N, 0))
DO_block_ptr = tl.advance(DO_block_ptr, (BLOCK_N, 0))
# initialize pointers to output
DK_block_ptr = tl.make_block_ptr(
base=DK + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_kn, stride_kk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
DV_block_ptr = tl.make_block_ptr(
base=DV + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_vk, stride_vn),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
tl.store(DK_block_ptr, (dk * sm_scale).to(DK.dtype.element_ty))
tl.store(DV_block_ptr, dv.to(tl.float16))
@triton.jit
def _bwd_kernel_dq(
Q, K, V, sm_scale, Out, DO,
DQ,
L,
D,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn,
Z, H, N_CTX,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
qvk_offset = off_hz * stride_qh
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
# Initialize pointers to Q, K, V
Q_block_ptr = tl.make_block_ptr(
base=Q + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
K_block_ptr = tl.make_block_ptr(
base=K + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + qvk_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_vn, stride_vk),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
DO_block_ptr = tl.make_block_ptr(
base=DO + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
# pointer to row-wise quantities in value-like data
D_ptrs = D + off_hz * N_CTX
l_ptrs = L + off_hz * N_CTX
qk_scale = sm_scale * 1.44269504
# load q and do: they will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q = (q * qk_scale).to(q.dtype)
do = tl.load(DO_block_ptr)
Di = tl.load(D_ptrs + offs_m)
l_i = tl.load(l_ptrs + offs_m)
dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# loop over k, v
lo = 0
hi = (start_m + 1) * BLOCK_M
for start_n in range(lo, hi, BLOCK_N):
# -- load k, v --
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
# -- compute qk ----
qk = tl.dot(q, k)
qk = tl.where(offs_m[:, None] >= (offs_n[None, :] + start_n), qk, float("-inf"))
p = tl.math.exp2(qk - l_i[:, None])
# compute dp = dot(v, do)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp += tl.dot(do, v)
# compute ds = p * (dp - delta[:, None])
ds = p * dp
# compute dq. Unfortunately we cannot avoid transpose here as this loop
# uses k both normal and transpose.
dq += tl.dot(ds.to(Q.dtype.element_ty), tl.trans(k))
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (0, BLOCK_N))
# initialize pointers to output
DQ_block_ptr = tl.make_block_ptr(
base=DQ + qvk_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
tl.store(DQ_block_ptr, (dq * sm_scale).to(tl.float16))
empty = torch.empty(128, device="cuda")
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, causal, sm_scale, split_kernel=False):
# shape constraints
_, _, seqlen, Lq = q.shape
Lk, Lv = k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
# For now we assume K and V seqlen = Q seqlen
assert seqlen == k.shape[-2] and seqlen == v.shape[-2]
# We've derived these previously from tuning the kernel
BLOCK_M = 256 if Lq == 128 else 128
BLOCK_N = 64 #128 if Lq == 128 else 64
waves_per_eu = 2 if Lq == 128 else 3
num_warps = 8 if Lq == 128 else 4
pre_load_v = False if Lq == 128 else True
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
stage = 3 if causal else 1
# Compute if we need padding and how much
seqlen_k = k.shape[-2]
if seqlen_k < BLOCK_N:
need_padding = True
extra_tokens_n = BLOCK_N - seqlen_k
# This effectively ensures we do not slice across Q.
assert(grid[0] == 1)
elif seqlen_k % BLOCK_N:
need_padding = True
extra_tokens_n = seqlen_k % BLOCK_N
else:
# We don't care if BLOCK_M isn't aligned, as we
# always boundary_check on Q and O
need_padding = False
extra_tokens_n = 0
o = torch.empty_like(q, dtype=v.dtype)
M = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
_attn_fwd[grid](
q, k, v, sm_scale, M, o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1],
N_CTX=q.shape[2],
BLOCK_DMODEL=Lk,
STAGE=stage,
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
waves_per_eu=waves_per_eu, pre_load_v=pre_load_v,
need_padding=need_padding, extra_tokens_n=extra_tokens_n,
num_stages=1, num_warps=num_warps
)
ctx.save_for_backward(q, k, v, o, M)
ctx.grid = grid
ctx.sm_scale = sm_scale
ctx.BLOCK_DMODEL = Lk
ctx.causal = causal
ctx.split_kernel = split_kernel
return o
@staticmethod
def backward(ctx, do):
# configuration is not supported
assert(not (ctx.split_kernel and not ctx.causal))
if torch.version.hip is not None:
BLOCK = 64
else:
BLOCK = 128
q, k, v, o, L = ctx.saved_tensors
assert do.is_contiguous()
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
do = do.contiguous()
dq = torch.zeros_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
BATCH, N_HEAD, N_CTX = q.shape[:3]
delta = torch.empty_like(L)
do_scaled = torch.empty_like(do)
# Figure out what BLOCK size fwd used and adjust num_blocks accordingly.
# If the two are the same, we don't need this but the bwd pass block size
# is smaller than the fwd so we need this scaling to ensure we loop over all
# values and don't skip some blocks.
# Alternatively we could compute a new grid but this keeps it consistent
# with fwd and easier to reason about.
block_scale = (q.shape[2] // ctx.grid[0]) // BLOCK
_attn_bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )](
o, do, #
do_scaled, delta, #
BLOCK_M=block_scale * BLOCK, D_HEAD=ctx.BLOCK_DMODEL, #
)
if not ctx.split_kernel:
_bwd_kernel[(ctx.grid[1],)](
q, k, v, ctx.sm_scale,
o, do_scaled,
dq, dk, dv,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
q.shape[0], q.shape[1], q.shape[2],
block_scale * ctx.grid[0],
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=4,
CAUSAL=ctx.causal,
num_stages=1,
)
else :
dq = torch.zeros_like(q)
_bwd_kernel_dk_dv[(block_scale * ctx.grid[0], ctx.grid[1])](
q, k, v, ctx.sm_scale,
o, do_scaled,
dk, dv,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
q.shape[0], q.shape[1], q.shape[2],
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=4,
num_stages=1,
)
_bwd_kernel_dq[ctx.grid](
q, k, v, ctx.sm_scale,
o, do_scaled,
dq,
L, delta,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
q.shape[0], q.shape[1], q.shape[2],
BLOCK_M=2*BLOCK, BLOCK_N=BLOCK,
BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=4, waves_per_eu=1,
num_stages=1,
)
# print(h.asm["ttgir"])
return dq, dk, dv, None, None, None
attention = _attention.apply
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD',
[(1, 40, 19, 128),
(4, 48, 1024, 64),
(4, 48, 997, 64),
(4, 48, 2048, 64),
(4, 48, 4096, 64),
(4, 48, 3989, 64),
(4, 48, 1024, 128),
(4, 48, 1021, 128),
(4, 48, 2048, 128),
(4, 48, 4096, 128),
(4, 16, 8192, 64),
(4, 16, 8080, 64),
#(4, 48, 16384, 64)
])
@pytest.mark.parametrize('causal', [False])
def test_op_fwd(Z, H, N_CTX, D_HEAD, causal, dtype=torch.float16):
torch.manual_seed(20)
q = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
k = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
v = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
if TORCH_HAS_FP8E5:
q = q.to(torch_dtype)
k = k.to(torch_dtype)
sm_scale = 0.5
dout = torch.randn_like(q, dtype=torch.float16)
# reference implementation
M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
p = torch.matmul(q.half(), k.transpose(2, 3).half()) * sm_scale
if causal:
p[:, :, M == 0] = float("-inf")
p = torch.softmax(p.float(), dim=-1).half()
ref_out = torch.matmul(p, v)
# triton implementation
tri_out = attention(q, k, v, causal, sm_scale)
# compare
torch.testing.assert_close(ref_out, tri_out, atol=1e-2, rtol=1e-2)
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD',
[(4, 48, 1024, 64),
(4, 48, 2048, 64),
(4, 48, 4096, 64),
(1, 16, 8192, 64),
])
def test_op_bwd(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
torch.manual_seed(20)
causal = True
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0., std=0.5).requires_grad_()
sm_scale = 0.5
split_kernel = True
dout = torch.randn_like(q)
# reference implementation
M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
p = torch.matmul(q, k.transpose(2, 3)) * sm_scale
if causal:
p[:, :, M == 0] = float("-inf")
p = torch.softmax(p.float(), dim=-1).half()
ref_out = torch.matmul(p, v)
ref_out.backward(dout)
ref_dv, v.grad = v.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dq, q.grad = q.grad.clone(), None
# # triton implementation
tri_out = attention(q, k, v, causal, sm_scale, split_kernel)
tri_out.backward(dout)
tri_dv, v.grad = v.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dq, q.grad = q.grad.clone(), None
# compare
torch.testing.assert_close(ref_out, tri_out, atol=1e-2, rtol=0)
if torch.version.hip is None:
torch.testing.assert_close(ref_dv, tri_dv, atol=1e-2, rtol=0)
# The current block size for MI200 series is 64x64. This results in
# larger differences in float results due to rounding.
else:
torch.testing.assert_close(ref_dv, tri_dv, atol=5e-2, rtol=0)
torch.testing.assert_close(ref_dk, tri_dk, atol=5e-2, rtol=1e-2)
torch.testing.assert_close(ref_dq, tri_dq, atol=5e-2, rtol=1e-2)
try:
from flash_attn.flash_attn_interface import \
flash_attn_qkvpacked_func as flash_attn_func
HAS_FLASH = True
except BaseException:
HAS_FLASH = False
# vary seq length for fixed head and batch=4
configs = []
for mode in ['fwd']:
for D_HEAD in [128]:
if mode == 'bwd' and D_HEAD == 128:
continue
for causal in [False]:
if mode == 'bwd' and causal == False:
continue
configs.append(triton.testing.Benchmark(
x_names=['BATCH', 'H','N_CTX'],
x_vals=[(16, 16, 1024),
(8, 16, 2048),
(4, 16, 4096),
(2, 16, 8192),
(1, 16, 16384),
(2, 48, 1024),
(2, 48, 2048),
(2, 48, 4096),
(2, 48, 8192),
(2, 48, 16384),
(8, 16, 1989),
(4, 16, 4097),
(2, 16, 8122),
(1, 16, 16281),
(2, 48, 1021),
(2, 48, 2001),
(2, 48, 3996),
(2, 48, 8181),
],
line_arg='provider',
line_vals=['triton'] + (['flash'] if HAS_FLASH else []),
line_names=['Triton'] + ([f'Flash-{FLASH_VER}'] if HAS_FLASH else []),
styles=[('red', '-'), ('blue', '-')],
ylabel='ms',
plot_name=f'fused-attention-{mode}-d{D_HEAD}-causal={causal}',
args={
'D_HEAD': D_HEAD,
'dtype': torch.float16,
'mode': mode,
'causal': causal})
)
@triton.testing.perf_report(configs)
def bench_flash_attention(
BATCH, H, N_CTX, D_HEAD, causal, mode, provider, dtype=torch.float16, device="cuda"
):
assert mode in ["fwd", "bwd"]
warmup = 25
rep = 100
split_kernel = False
# Bwd pass only supports causal=True right now
if mode == 'bwd':
causal = True
split_kernel = True
if provider == "triton":
q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
if mode == "fwd":
q = q.to(torch_dtype)
k = k.to(torch_dtype)
sm_scale = 1.3
fn = lambda: attention(q, k, v, causal, sm_scale, split_kernel)
if mode == 'bwd':
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
if provider == "flash":
qkv = torch.randn(
(BATCH, N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True
)
fn = lambda: flash_attn_func(qkv, causal=causal)
if mode == "bwd":
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
total_flops = 2 * flops_per_matmul
if causal:
total_flops *= 0.5
if mode == "bwd":
total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute)
return total_flops / ms * 1e-9
# only works on post-Ampere GPUs right now
bench_flash_attention.run(save_path=".", print_data=True)