Files
ROCm/python/test/regression/test_functional_regressions.py
Justin Lebar df08301e76 Reformat Python code with yapf. (#2589)
I've add an option to yapf to do what we want for long lines, see
https://github.com/google/yapf/pull/1177.  We can now have a real Python
formatter, yay!

To make this PR, I ran my modified yapf over the repository, then looked
over the full diff.  Where yapf was mangling the param list of long
function decls/calls (mostly kernels), I manually added `#` to put
linebreaks where we want.  I fixed up other formatting too -- mostly
adding or removing a trailing comma from lists.

Overall, trailing `#` was sufficient to get formatting similar to our
current code.  I didn't have to disable yapf anywhere.

---------

Co-authored-by: Phil Tillet <phil@openai.com>
2023-11-02 20:44:17 -07:00

227 lines
9.0 KiB
Python

import numpy as np
import pytest
import torch
from numpy.random import RandomState
import triton
import triton.language as tl
def test_chained_matmul():
# Regression test for issue #1601
def chained_matmul_reference(a, b, c):
intermediate = torch.einsum('MK,NK->MN', a, b)
return torch.einsum('MN,NK->MK', intermediate, c)
@triton.jit
def chained_matmul_kernel(A, # shape: (m, k)
B, # shape: (n, k)
C, # shape: (n, k)
out, # shape: (m, k)
m, n, k: tl.constexpr, #
block_m: tl.constexpr, block_n: tl.constexpr, block_k: tl.constexpr):
tl.static_assert(block_k == k, f"expected block_k == k but got {block_k} != {k}")
block_ix = tl.program_id(0)
a_tile = (block_ix * block_m + tl.arange(0, block_m))[:, None] * block_k \
+ tl.arange(0, block_k)[None, :]
a = tl.load(A + a_tile, mask=a_tile < m * k, other=0.0)
acc = tl.zeros([block_m, block_k], dtype=tl.float32)
for loop_block_start in range(0, n, block_n):
bc_tile = (loop_block_start + tl.arange(0, block_n))[:, None] * block_k \
+ tl.arange(0, block_k)[None, :]
b = tl.load(B + bc_tile, mask=bc_tile < n * k, other=0.0)
intermediate = tl.dot(a, tl.trans(b))
intermediate_mask = ((loop_block_start + tl.arange(0, block_n)) < n)[None, :] \
* (tl.arange(0, block_m) < m)[:, None]
intermediate = tl.where(intermediate_mask, intermediate, 0.0)
c = tl.load(C + bc_tile, mask=bc_tile < n * k)
acc += tl.dot(intermediate.to(A.dtype.element_ty), c)
tl.store(out + a_tile, acc.to(A.dtype.element_ty), mask=a_tile < m * k)
m, n, k = 32, 64, 128
block_m, block_n, block_k = 16, 32, k
grid = (triton.cdiv(m, block_m), )
a = torch.randint(low=0, high=2, size=(m, k), dtype=torch.float16, device='cuda')
b = torch.randint(low=0, high=2, size=(n, k), dtype=torch.float16, device='cuda')
c = torch.randint_like(b, low=0, high=2)
triton_result = torch.zeros_like(a)
torch_result = chained_matmul_reference(a, b, c)
chained_matmul_kernel[grid](
a, b, c, triton_result, m, n, k, #
block_m=block_m, block_n=block_n, block_k=block_k)
assert (torch_result == triton_result).all()
def test_vecmat():
@triton.jit
def batched_vecmat(
# inputs
A, # shape: [dim_m, dim_k]
B, # shape: [dim_m, dim_n, dim_k]
# dimensions
dim_m, dim_n, dim_k,
# outputs
output,
# block information
block_m: tl.constexpr, block_n: tl.constexpr, block_k: tl.constexpr):
m_index = tl.program_id(0)
n_index = tl.program_id(1)
# Output tile
output_tile = (m_index * block_m + tl.arange(0, block_m))[:, None] * dim_n \
+ (n_index * block_n + tl.arange(0, block_n))[None, :]
vecmat = tl.zeros([block_m, block_n], dtype=A.dtype.element_ty)
k_blocks = dim_k // block_k
for k_index in range(k_blocks):
# Load A tile
a_tile = (m_index * block_m + tl.arange(0, block_m))[:, None] * dim_k \
+ (k_index * block_k + tl.arange(0, block_k))[None, :]
a = tl.load(A + a_tile)
# Load B tile, transposed to [n, m, k] in order to broadcast A on a
# leading dimension.
b_tile = (m_index * block_m + tl.arange(0, block_m))[None, :, None] * dim_n * dim_k \
+ (n_index * block_n + tl.arange(0, block_n))[:, None, None] * dim_k \
+ (k_index * block_k + tl.arange(0, block_k))[None, None, :]
b = tl.load(B + b_tile)
expanded_a, _ = tl.broadcast(a, b)
vecmat += tl.trans(tl.sum(expanded_a * b, axis=2))
tl.store(output + output_tile, vecmat)
M, N, K = 128, 128, 128
block_m, block_n, block_k = 16, 32, 64
rs = RandomState(17)
A_vec = rs.randint(0, 4, (M, K)).astype('float32')
B_vec = rs.randint(0, 4, (M, N, K)).astype('float32')
A = A_vec
B = B_vec
A_tri = torch.tensor(A, device='cuda')
B_tri = torch.tensor(B, device='cuda')
C_tri = torch.zeros((M, N), dtype=torch.float32, device='cuda')
grid = (M // block_m, N // block_n)
batched_vecmat[grid](
A_tri, B_tri, M, N, K, C_tri, #
block_m=block_m, block_n=block_n, block_k=block_k, #
num_warps=4, num_stages=1)
A_expanded = A[:, np.newaxis, :]
A_broadcasted = np.broadcast_to(A_expanded, (M, N, K))
AB = A_broadcasted * B
C_ref = np.sum(AB, axis=2)
np.testing.assert_allclose(C_ref, C_tri.cpu().numpy(), rtol=0.01, atol=1e-3)
@pytest.mark.parametrize("type",
["pre_load", "post_load", "post_pre_mixed", "post_load_two_iters", "post_load_three_iters"])
def test_iv_dependent_matmul(type):
@triton.jit
def kernel(a_ptr, b_ptr, c_ptr, #
M, N, K, #
stride_am, stride_ak, #
stride_bk, stride_bn, #
stride_cm, stride_cn, #
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, #
type: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptr = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptr = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
a_ptrs = a_ptr
b_ptrs = b_ptr
if type == "post_load_two_iters":
a_ptrs_next = a_ptr + BLOCK_SIZE_K * stride_ak
b_ptrs_next = b_ptr + BLOCK_SIZE_K * stride_bk
elif type == "post_load_three_iters":
a_ptrs_next = a_ptr + BLOCK_SIZE_K * stride_ak
b_ptrs_next = b_ptr + BLOCK_SIZE_K * stride_bk
a_ptrs_next_next = a_ptr + 2 * BLOCK_SIZE_K * stride_ak
b_ptrs_next_next = b_ptr + 2 * BLOCK_SIZE_K * stride_bk
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
if type == "pre_load":
a_ptrs = a_ptr + k * BLOCK_SIZE_K * stride_ak
b_ptrs = b_ptr + k * BLOCK_SIZE_K * stride_bk
elif type == "post_pre_mixed":
a_ptrs = a_ptr + k * BLOCK_SIZE_K * stride_ak
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
accumulator += tl.dot(a, b)
if type == "post_load":
a_ptrs = a_ptr + (k + 1) * BLOCK_SIZE_K * stride_ak
b_ptrs = b_ptr + (k + 1) * BLOCK_SIZE_K * stride_bk
elif type == "post_pre_mixed":
b_ptrs = b_ptr + (k + 1) * BLOCK_SIZE_K * stride_bk
elif type == "post_load_two_iters":
a_ptrs = a_ptrs_next
b_ptrs = b_ptrs_next
a_ptrs_next = a_ptr + (k + 2) * BLOCK_SIZE_K * stride_ak
b_ptrs_next = b_ptr + (k + 2) * BLOCK_SIZE_K * stride_bk
elif type == "post_load_three_iters":
a_ptrs = a_ptrs_next
b_ptrs = b_ptrs_next
a_ptrs_next = a_ptrs_next_next
b_ptrs_next = b_ptrs_next_next
a_ptrs_next_next = a_ptr + (k + 3) * BLOCK_SIZE_K * stride_ak
b_ptrs_next_next = b_ptr + (k + 3) * BLOCK_SIZE_K * stride_bk
c = accumulator.to(tl.float16)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
M = 256
K = 256
N = 256
BLOCK_SIZE_K = 32
BLOCK_SIZE_N = 32
BLOCK_SIZE_M = 32
a = torch.rand((M, K), device='cuda')
b = torch.rand((K, N), device='cuda')
torch_output = torch.mm(a, b)
triton_output = torch.empty_like(torch_output, device=torch_output.device)
def grid(META):
return (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), )
num_stages = 4 if type == "post_load_three_iters" else 3
kernel[grid](
a, b, triton_output, M, N, K, #
a.stride(0), a.stride(1), b.stride(0), b.stride(1), #
triton_output.stride(0), triton_output.stride(1), #
BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, type=type, #
num_stages=num_stages)
torch.testing.assert_close(torch_output, triton_output, rtol=1e-2, atol=1e-2)