Files
ROCm/python/test/regression/test_performance.py
Weixing Zhang 34b89a1173 [OPTIMIZER] Tweak warpsPerCTA based on the shape of MMA output (#2581)
In current implementation, warpsPerCTA is always set to [numWarps, 1]
for 2 tt.dot fusion scenario. But, it is not optimal for cases such that
tt.dot doesn't have enough parallelism on row dimension but on column
dimension.
2023-11-03 16:40:03 -04:00

268 lines
12 KiB
Python

import pytest
import torch
import triton
import triton.language as tl
import triton.ops
from triton.testing import get_dram_gbps, get_max_tensorcore_tflops, nvsmi
DEVICE_NAME = {7: 'v100', 8: 'a100'}[torch.cuda.get_device_capability()[0]]
#######################
# Utilities
#######################
def print_perf(cur_ms, cur_util, ref_util):
# print on the same line cur_ms, cur_util and ref_util with 3 decimal places
print(f'{cur_ms:.3f} ms \t cur: {cur_util:.3f} \t ref: {ref_util:.3f} \t dif={cur_util - ref_util:.3f}', end='\t')
#######################
# Matrix Multiplication
#######################
sm_clocks = {'v100': 1350, 'a100': 1350}
mem_clocks = {'v100': 877, 'a100': 1215}
matmul_data = {
'a100': {
# square
(512, 512, 512): {'float16': 0.108, 'float32': 0.097, 'int8': 0.05},
(1024, 1024, 1024): {'float16': 0.355, 'float32': 0.313, 'int8': 0.169},
(2048, 2048, 2048): {'float16': 0.653, 'float32': 0.532, 'int8': 0.34},
(8192, 8192, 8192): {'float16': 0.839, 'float32': 0.754, 'int8': 0.51},
# tall-skinny
(16, 1024, 1024): {'float16': 0.015, 'float32': 0.009, 'int8': 0.005},
(16, 4096, 4096): {'float16': 0.080, 'float32': 0.051, 'int8': 0.026},
(16, 8192, 8192): {'float16': 0.083, 'float32': 0.077, 'int8': 0.043},
(64, 1024, 1024): {'float16': 0.045, 'float32': 0.023, 'int8': 0.017},
(64, 4096, 4096): {'float16': 0.170, 'float32': 0.000, 'int8': 0.097},
(64, 8192, 8192): {'float16': 0.227, 'float32': 0.000, 'int8': 0.174},
(1024, 64, 1024): {'float16': 0.040, 'float32': 0.046, 'int8': 0.017},
(4096, 64, 4096): {'float16': 0.160, 'float32': 0.214, 'int8': 0.102},
(8192, 64, 8192): {'float16': 0.272, 'float32': 0.000, 'int8': 0.177},
# test EVEN_K==False
(8192, 8192, 8176): {'float16': 0.828, 'float32': 0.743, 'int8': 0.51},
}
}
@pytest.mark.parametrize('M, N, K, dtype_str', [(M, N, K, dtype_str)
for M, N, K in matmul_data[DEVICE_NAME].keys()
for dtype_str in ['float16']])
def test_matmul(M, N, K, dtype_str):
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
if dtype_str in ['float32', 'int8'] and DEVICE_NAME != 'a100':
pytest.skip('Only test float32 & int8 on a100')
if (M, N, K) in [(64, 4096, 4096), (64, 8192, 8192), (8192, 64, 8192)] and dtype_str == 'float32':
pytest.skip('Out of shared memory in float32')
dtype = {'float16': torch.float16, 'float32': torch.float32, 'int8': torch.int8}[dtype_str]
torch.manual_seed(0)
ref_gpu_util = matmul_data[DEVICE_NAME][(M, N, K)][dtype_str]
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
max_gpu_perf = get_max_tensorcore_tflops(dtype, clock_rate=cur_sm_clock * 1e3)
if dtype == torch.int8:
a = torch.randint(-128, 127, (M, K), dtype=dtype, device='cuda')
b = torch.randint(-128, 127, (N, K), dtype=dtype, device='cuda')
b = b.t() # only test row-col layout
else:
a = torch.randn((M, K), dtype=dtype, device='cuda')
b = torch.randn((K, N), dtype=dtype, device='cuda')
fn = lambda: triton.ops.matmul(a, b)
ms = triton.testing.do_bench_cudagraph(fn)
cur_gpu_perf = 2. * M * N * K / ms * 1e-9
cur_gpu_util = cur_gpu_perf / max_gpu_perf
print_perf(ms, cur_gpu_util, ref_gpu_util)
triton.testing.assert_close(cur_gpu_util, ref_gpu_util, atol=0.02, rtol=0.01)
#######################
# Element-Wise
#######################
@triton.jit
def _add(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
elementwise_data = {
'a100': {
1024 * 16: {'float16': 0.031, 'float32': 0.060},
1024 * 64: {'float16': 0.120, 'float32': 0.224},
1024 * 256: {'float16': 0.394, 'float32': 0.691},
1024 * 1024: {'float16': 1.06, 'float32': 1.453},
1024 * 16384: {'float16': 0.832, 'float32': 0.862},
1024 * 65536: {'float16': 0.873, 'float32': 0.882},
# Non pow 2
1020 * 100: {'float16': 0.173, 'float32': 0.327},
10003 * 7007: {'float16': 0.522, 'float32': 0.873},
}
}
@pytest.mark.parametrize('N', elementwise_data[DEVICE_NAME].keys())
@pytest.mark.parametrize("dtype_str", ['float16', 'bfloat16', 'float32'])
def test_elementwise(N, dtype_str):
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
torch.manual_seed(0)
if dtype_str in ['bfloat16'] and DEVICE_NAME != 'a100':
pytest.skip('Only test bfloat16 on a100')
dtype = {'float16': torch.float16, 'bfloat16': torch.bfloat16, 'float32': torch.float32}[dtype_str]
ref_dtype_str = 'float16' if dtype_str == 'bfloat16' else dtype_str
ref_gpu_util = elementwise_data[DEVICE_NAME][N][ref_dtype_str]
max_gpu_perf = get_dram_gbps()
z = torch.empty((N, ), dtype=dtype, device='cuda')
x = torch.randn_like(z)
y = torch.randn_like(z)
grid = lambda args: (triton.cdiv(N, args['BLOCK_SIZE']), )
fn = lambda: _add[grid](x, y, z, N, BLOCK_SIZE=1024)
ms = triton.testing.do_bench_cudagraph(fn)
cur_gpu_perf = 3. * N * z.element_size() / ms * 1e-6
cur_gpu_util = cur_gpu_perf / max_gpu_perf
print_perf(ms, cur_gpu_util, ref_gpu_util)
triton.testing.assert_close(cur_gpu_util, ref_gpu_util, atol=0.02, rtol=0.01)
#######################
# Flash-Attention
#######################
flash_attention_data = {
"a100": {
(4, 48, 4096, 64, True, True, 'forward', 'float16'): 0.542,
(4, 48, 4096, 64, True, True, 'forward', 'bfloat16'): 0.471,
(4, 48, 1024, 16, True, True, 'forward', 'float32'): 0.155,
(4, 48, 4096, 64, True, True, 'backward', 'float16'): 0.232,
(4, 48, 4096, 64, True, True, 'backward', 'bfloat16'): 0.231,
(4, 48, 1024, 16, True, True, 'backward', 'float32'): 0.138,
(4, 48, 4096, 64, True, False, 'forward', 'float16'): 0.306,
(4, 48, 4096, 64, True, False, 'forward', 'bfloat16'): 0.266,
(4, 48, 1024, 16, True, False, 'forward', 'float32'): 0.098,
(4, 48, 4096, 64, True, False, 'backward', 'float16'): 0.134,
(4, 48, 4096, 64, True, False, 'backward', 'bfloat16'): 0.135,
(4, 48, 1024, 16, True, False, 'backward', 'float32'): 0.092,
(4, 48, 4096, 64, False, True, 'forward', 'float16'): 0.541,
(4, 48, 4096, 64, False, True, 'forward', 'bfloat16'): 0.471,
(4, 48, 1024, 16, False, True, 'forward', 'float32'): 0.150,
(4, 48, 4096, 64, False, True, 'backward', 'float16'): 0.291,
(4, 48, 4096, 64, False, True, 'backward', 'bfloat16'): 0.255,
(4, 48, 1024, 16, False, True, 'backward', 'float32'): 0.144,
(4, 48, 4096, 64, False, False, 'forward', 'float16'): 0.306,
(4, 48, 4096, 64, False, False, 'forward', 'bfloat16'): 0.266,
(4, 48, 1024, 16, False, False, 'forward', 'float32'): 0.098,
(4, 48, 4096, 64, False, False, 'backward', 'float16'): 0.159,
(4, 48, 4096, 64, False, False, 'backward', 'bfloat16'): 0.159,
(4, 48, 1024, 16, False, False, 'backward', 'float32'): 0.088,
}
}
@pytest.mark.parametrize("dtype_str", ['float16', 'bfloat16', 'float32'])
@pytest.mark.parametrize("mode", ['forward', 'backward'])
@pytest.mark.parametrize("causal", [True, False])
@pytest.mark.parametrize("seq_par", [True, False])
@pytest.mark.parametrize("Z, H, N_CTX, D_HEAD", [[4, 48, 4096, 64]])
def test_flash_attention(Z, H, N_CTX, D_HEAD, seq_par, causal, mode, dtype_str):
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
is_backward = mode == 'backward'
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
pytest.skip("Flash attention only supported for compute capability < 80")
torch.manual_seed(20)
dtype = {'float16': torch.float16, 'bfloat16': torch.bfloat16, 'float32': torch.float32}[dtype_str]
# init data
if dtype_str == 'float32':
N_CTX = 1024
D_HEAD = 16
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2).requires_grad_()
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2).requires_grad_()
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2).requires_grad_()
sm_scale = 0.2
# benchmark
fn = lambda: triton.ops.attention(q, k, v, causal, sm_scale, seq_par)
if is_backward:
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench_cudagraph(fn)
# compute flops
flops_per_matmul = 2. * Z * H * N_CTX * N_CTX * D_HEAD * 0.5
total_flops = 2 * flops_per_matmul
if is_backward:
total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute)
cur_gpu_perf = total_flops / ms * 1e-9
# maximum flops
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
max_gpu_perf = get_max_tensorcore_tflops(dtype, clock_rate=cur_sm_clock * 1e3)
cur_gpu_util = cur_gpu_perf / max_gpu_perf
ref_gpu_util = flash_attention_data[DEVICE_NAME][(Z, H, N_CTX, D_HEAD, seq_par, causal, mode, dtype_str)]
print_perf(ms, cur_gpu_util, ref_gpu_util)
triton.testing.assert_close(cur_gpu_util, ref_gpu_util, atol=0.02, rtol=0.01)
#######################
# Reduction
#######################
@triton.jit
def _sum(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
# run in a loop to only to make it compute bound.
for i in range(100):
x = tl.sum(x, axis=0) + y
tl.store(output_ptr + offsets, x, mask=mask)
reduction_data = {
'a100': {
1024 * 16384: {'float16': 0.016, 'float32': 0.031, 'int16': 0.022, 'int32': 0.048},
1024 * 65536: {'float16': 0.016, 'float32': 0.032, 'int16': 0.022, 'int32': 0.049},
}
}
@pytest.mark.parametrize('N', reduction_data[DEVICE_NAME].keys())
@pytest.mark.parametrize("dtype_str", ['float16', 'float32', 'int16', 'int32'])
def test_reductions(N, dtype_str):
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
torch.manual_seed(0)
dtype = {'float16': torch.float16, 'float32': torch.float32, 'int16': torch.int16, 'int32': torch.int32}[dtype_str]
ref_gpu_util = reduction_data[DEVICE_NAME][N][dtype_str]
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
max_gpu_perf = get_max_tensorcore_tflops(dtype, clock_rate=cur_sm_clock * 1e3)
z = torch.empty((N, ), dtype=dtype, device='cuda')
if dtype == torch.float16 or dtype == torch.float32:
x = torch.randn_like(z)
y = torch.randn_like(z)
else:
info = torch.iinfo(dtype)
x = torch.randint(info.min, info.max, (N, ), dtype=dtype, device='cuda')
y = torch.randint(info.min, info.max, (N, ), dtype=dtype, device='cuda')
grid = lambda args: (triton.cdiv(N, args['BLOCK_SIZE']), )
fn = lambda: _sum[grid](x, y, z, N, BLOCK_SIZE=1024)
ms = triton.testing.do_bench_cudagraph(fn)
cur_gpu_perf = 100. * 2. * N / ms * 1e-9
cur_gpu_util = cur_gpu_perf / max_gpu_perf
print_perf(ms, cur_gpu_util, ref_gpu_util)
triton.testing.assert_close(cur_gpu_util, ref_gpu_util, atol=0.02, rtol=0.01)