mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
147 lines
4.7 KiB
Python
147 lines
4.7 KiB
Python
import sys
|
|
|
|
import torch
|
|
from torch.testing import assert_close
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
@triton.jit
|
|
def kernel_device_assert(X, Y, BLOCK: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
tl.device_assert(x == 0, "x != 0")
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit
|
|
def kernel_assert_passes(X, Y, BLOCK: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
# Trivial assert, should not be an error.
|
|
tl.device_assert(0 == 0, "x != 0")
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit(debug=False)
|
|
def kernel_device_assert_no_debug(X, Y, BLOCK: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
tl.device_assert(x == 0, "x != 0")
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit
|
|
def kernel_assert(X, Y, BLOCK: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
assert x == 0, "x != 0"
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit
|
|
def kernel_static_assert(X, Y, BLOCK: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
tl.static_assert(BLOCK == 128, "BLOCK != 128")
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
def test_assert(func: str):
|
|
shape = (128, )
|
|
x = torch.arange(0, shape[0], dtype=torch.int32, device='cuda')
|
|
y = torch.zeros(shape, dtype=x.dtype, device="cuda")
|
|
if func == "device_assert":
|
|
kernel_device_assert[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
if func == "device_assert_passes":
|
|
# Assert passes; no error.
|
|
kernel_assert_passes[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
elif func == "no_debug":
|
|
# TRITON_DEBUG=1 can override the debug flag
|
|
kernel_device_assert_no_debug[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
elif func == "assert":
|
|
kernel_assert[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
elif func == "static_assert":
|
|
kernel_static_assert[(1, )](x, y, BLOCK=shape[0])
|
|
elif func == "double_assert":
|
|
# Launching a different kernel after the first one asserted used to
|
|
# segfault. What seems to have happened is:
|
|
# - The first kernel is enqueued but doesn't run yet.
|
|
# - We go to launch the second kernel. Because this is the first time
|
|
# we're running it, we have to load the kernel into the GPU.
|
|
# - Loading the kernel takes some time, during which the first launch
|
|
# completes.
|
|
# - Now the GPU is in an error state. We need to detect this inside
|
|
# the kernel-launch/loading code and bail out properly. If we don't,
|
|
# we segfault.
|
|
kernel_device_assert[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
kernel_assert_passes[(1, )](x, y, num_warps=2, BLOCK=shape[0])
|
|
assert_close(y, x)
|
|
|
|
|
|
@triton.jit
|
|
def jit_device_assert_none(x):
|
|
tl.device_assert(x == 0, "x != 0")
|
|
|
|
|
|
@triton.jit(debug=True)
|
|
def jit_device_assert_true(x):
|
|
tl.device_assert(x == 0, "x != 0")
|
|
|
|
|
|
@triton.jit(debug=False)
|
|
def jit_device_assert_false(x):
|
|
tl.device_assert(x == 0, "x != 0")
|
|
|
|
|
|
@triton.jit
|
|
def kernel_device_assert_nested(X, Y, BLOCK: tl.constexpr, jit_debug: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
if jit_debug == "true":
|
|
jit_device_assert_true(x)
|
|
elif jit_debug == "false":
|
|
jit_device_assert_false(x)
|
|
else:
|
|
jit_device_assert_none(x)
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit(debug=True)
|
|
def kernel_device_assert_nested_true(X, Y, BLOCK: tl.constexpr, jit_debug: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
if jit_debug == "true":
|
|
jit_device_assert_true(x)
|
|
elif jit_debug == "false":
|
|
jit_device_assert_false(x)
|
|
else:
|
|
jit_device_assert_none(x)
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
@triton.jit(debug=False)
|
|
def kernel_device_assert_nested_false(X, Y, BLOCK: tl.constexpr, jit_debug: tl.constexpr):
|
|
x = tl.load(X + tl.arange(0, BLOCK))
|
|
if jit_debug == "true":
|
|
jit_device_assert_true(x)
|
|
elif jit_debug == "false":
|
|
jit_device_assert_false(x)
|
|
else:
|
|
jit_device_assert_none(x)
|
|
tl.store(Y + tl.arange(0, BLOCK), x)
|
|
|
|
|
|
def test_assert_nested(caller: str, callee: str):
|
|
shape = (128, )
|
|
x = torch.arange(0, shape[0], dtype=torch.int32, device='cuda')
|
|
y = torch.zeros(shape, dtype=x.dtype, device="cuda")
|
|
if caller == "none":
|
|
kernel_device_assert_nested[(1, )](x, y, num_warps=2, BLOCK=shape[0], jit_debug=callee)
|
|
elif caller == "true":
|
|
kernel_device_assert_nested_true[(1, )](x, y, num_warps=2, BLOCK=shape[0], jit_debug=callee)
|
|
elif caller == "false":
|
|
kernel_device_assert_nested_false[(1, )](x, y, num_warps=2, BLOCK=shape[0], jit_debug=callee)
|
|
assert_close(y, x)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) == 3:
|
|
test_assert_nested(sys.argv[1], sys.argv[2])
|
|
else:
|
|
test_assert(sys.argv[1])
|