mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
342 lines
14 KiB
Python
342 lines
14 KiB
Python
from __future__ import annotations
|
|
|
|
import builtins
|
|
import time
|
|
from typing import Dict
|
|
|
|
from ..testing import do_bench
|
|
from .jit import KernelInterface
|
|
|
|
|
|
class OutOfResources(Exception):
|
|
|
|
def __init__(self, required, limit, name):
|
|
self.message = (f"out of resource: {name}, Required: {required}, Hardware limit: {limit}. " +
|
|
"Reducing block sizes or `num_stages` may help.")
|
|
self.required = required
|
|
self.limit = limit
|
|
self.name = name
|
|
super().__init__(self.message)
|
|
|
|
def __reduce__(self):
|
|
# this is necessary to make CompilationError picklable
|
|
return (type(self), (self.required, self.limit, self.name))
|
|
|
|
|
|
class Autotuner(KernelInterface):
|
|
|
|
def __init__(
|
|
self,
|
|
fn,
|
|
arg_names,
|
|
configs,
|
|
key,
|
|
verbose,
|
|
reset_to_zero,
|
|
restore_value,
|
|
prune_configs_by: Dict = None,
|
|
warmup=25,
|
|
rep=100,
|
|
):
|
|
"""
|
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
|
'top_k': number of configs to bench
|
|
'prune_num_stages_by'(optional): a function used to prune num_stages. It takes configs:List[Config] as its input, and returns pruned configs.
|
|
"""
|
|
if not configs:
|
|
self.configs = [Config({}, num_warps=4, num_stages=2, num_ctas=1)]
|
|
else:
|
|
self.configs = configs
|
|
self.key_idx = [arg_names.index(k) for k in key]
|
|
self.cache = {}
|
|
self.arg_names = arg_names
|
|
|
|
# Reset to zero or restore values
|
|
self.reset_idx = []
|
|
if reset_to_zero is not None:
|
|
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
|
self.restore_idx = []
|
|
if restore_value is not None:
|
|
self.restore_idx = [arg_names.index(k) for k in restore_value]
|
|
|
|
# Hook to reset or restore for required tensors
|
|
self.pre_hook = lambda args, reset_only=False: 0
|
|
self.post_hook = lambda args: 0
|
|
if len(self.reset_idx) > 0 or len(self.restore_idx) > 0:
|
|
|
|
def _pre_hook(args, reset_only=False):
|
|
for i in self.reset_idx:
|
|
args[i].zero_()
|
|
if not reset_only:
|
|
self.restore_copies = [args[i].clone() for i in self.restore_idx]
|
|
|
|
self.pre_hook = _pre_hook
|
|
if len(self.restore_idx) > 0:
|
|
|
|
def _post_hook(args):
|
|
for i, j in enumerate(self.restore_idx):
|
|
args[j].copy_(self.restore_copies[i])
|
|
self.restore_copies = []
|
|
|
|
self.post_hook = _post_hook
|
|
|
|
# Prune configs
|
|
if prune_configs_by:
|
|
perf_model, top_k = prune_configs_by["perf_model"], prune_configs_by["top_k"]
|
|
if "early_config_prune" in prune_configs_by:
|
|
early_config_prune = prune_configs_by["early_config_prune"]
|
|
else:
|
|
perf_model, top_k, early_config_prune = None, None, None
|
|
self.perf_model, self.configs_top_k = perf_model, top_k
|
|
self.early_config_prune = early_config_prune
|
|
|
|
self.fn = fn
|
|
self.warmup = warmup
|
|
self.rep = rep
|
|
self.verbose = verbose
|
|
|
|
def _bench(self, *args, config, **meta):
|
|
# check for conflicts, i.e. meta-parameters both provided
|
|
# as kwargs and by the autotuner
|
|
conflicts = meta.keys() & config.kwargs.keys()
|
|
if conflicts:
|
|
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
|
" Make sure that you don't re-define auto-tuned symbols.")
|
|
# augment meta-parameters with tunable ones
|
|
current = dict(meta, **config.kwargs)
|
|
full_nargs = {**self.nargs, **current}
|
|
|
|
def kernel_call():
|
|
if config.pre_hook:
|
|
config.pre_hook(full_nargs)
|
|
self.pre_hook(args)
|
|
self.fn.run(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_stages=config.num_stages,
|
|
num_ctas=config.num_ctas,
|
|
enable_warp_specialization=config.enable_warp_specialization,
|
|
# enable_persistent=False,
|
|
**current,
|
|
)
|
|
self.post_hook(args)
|
|
|
|
try:
|
|
return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
|
|
except OutOfResources:
|
|
return [float("inf"), float("inf"), float("inf")]
|
|
|
|
def get_best_config(self):
|
|
return self.best_config
|
|
|
|
|
|
def run(self, *args, **kwargs):
|
|
self.nargs = dict(zip(self.arg_names, args))
|
|
if len(self.configs) > 1:
|
|
all_args = {**self.nargs, **kwargs}
|
|
_args = []
|
|
for name in self.arg_names:
|
|
if name in all_args:
|
|
_args.append(all_args[name])
|
|
key = [_args[i] for i in self.key_idx]
|
|
for arg in _args:
|
|
if hasattr(arg, "dtype"):
|
|
key.append(str(arg.dtype))
|
|
key = tuple(key)
|
|
if key not in self.cache:
|
|
# prune configs
|
|
pruned_configs = self.prune_configs(kwargs)
|
|
bench_start = time.time()
|
|
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
|
|
bench_end = time.time()
|
|
self.bench_time = bench_end - bench_start
|
|
self.cache[key] = builtins.min(timings, key=timings.get)
|
|
self.pre_hook(args, reset_only=True)
|
|
self.configs_timings = timings
|
|
if self.verbose:
|
|
print(str(key) + ": " + str(self.cache[key]))
|
|
config = self.cache[key]
|
|
else:
|
|
config = self.configs[0]
|
|
self.best_config = config
|
|
full_nargs = {**self.nargs, **kwargs, **self.best_config.kwargs}
|
|
if config.pre_hook is not None:
|
|
config.pre_hook(full_nargs)
|
|
ret = self.fn.run(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_stages=config.num_stages,
|
|
num_ctas=config.num_ctas,
|
|
enable_warp_specialization=config.enable_warp_specialization,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
)
|
|
self.nargs = None
|
|
return ret
|
|
|
|
def prune_configs(self, kwargs):
|
|
pruned_configs = self.configs
|
|
if self.early_config_prune:
|
|
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
|
if self.perf_model:
|
|
top_k = self.configs_top_k
|
|
if isinstance(top_k, float) and top_k <= 1.0:
|
|
top_k = int(len(self.configs) * top_k)
|
|
if len(pruned_configs) > top_k:
|
|
est_timing = {
|
|
config:
|
|
self.perf_model(
|
|
**self.nargs,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
num_stages=config.num_stages,
|
|
num_warps=config.num_warps,
|
|
num_ctas=config.num_ctas,
|
|
enable_warp_specialization=config.enable_warp_specialization,
|
|
enable_persistent=config.enable_persistent,
|
|
)
|
|
for config in pruned_configs
|
|
}
|
|
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
|
return pruned_configs
|
|
|
|
def warmup(self, *args, **kwargs):
|
|
self.nargs = dict(zip(self.arg_names, args))
|
|
for config in self.prune_configs(kwargs):
|
|
self.fn.warmup(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_ctas=config.num_ctas,
|
|
num_stages=config.num_stages,
|
|
enable_warp_specialization=config.enable_warp_specialization,
|
|
enable_persistent=config.enable_persistent,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
)
|
|
self.nargs = None
|
|
|
|
|
|
class Config:
|
|
"""
|
|
An object that represents a possible kernel configuration for the auto-tuner to try.
|
|
|
|
:ivar meta: a dictionary of meta-parameters to pass to the kernel as keyword arguments.
|
|
:type meta: dict[Str, Any]
|
|
:ivar num_warps: the number of warps to use for the kernel when compiled for GPUs. For example, if
|
|
`num_warps=8`, then each kernel instance will be automatically parallelized to
|
|
cooperatively execute using `8 * 32 = 256` threads.
|
|
:type num_warps: int
|
|
:ivar num_stages: the number of stages that the compiler should use when software-pipelining loops.
|
|
Mostly useful for matrix multiplication workloads on SM80+ GPUs.
|
|
:type enable_warp_specialization: bool
|
|
:ivar enable_warp_specialization: enable specialization (spatial partitioning) or not. See https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#spatial-partitioning-also-known-as-warp-specialization
|
|
:ivar pre_hook: a function that will be called before the kernel is called. Parameters of this
|
|
function are args.
|
|
"""
|
|
|
|
def __init__(self, kwargs, num_warps=4, num_stages=2, num_ctas=1, enable_warp_specialization=False, pre_hook=None):
|
|
self.kwargs = kwargs
|
|
self.num_warps = num_warps
|
|
self.num_ctas = num_ctas
|
|
self.num_stages = num_stages
|
|
self.enable_warp_specialization = enable_warp_specialization
|
|
# TODO[shuhaoj]: May make enable_persistent configurable in future if necessary.
|
|
self.enable_persistent = False
|
|
self.pre_hook = pre_hook
|
|
|
|
def __str__(self):
|
|
res = []
|
|
for k, v in self.kwargs.items():
|
|
res.append(f'{k}: {v}')
|
|
res.append(f'num_warps: {self.num_warps}')
|
|
## Comment out Hopper specific parameters
|
|
#res.append(f'num_ctas: {self.num_ctas}')
|
|
res.append(f'num_stages: {self.num_stages}')
|
|
#res.append(f'enable_warp_specialization: {self.enable_warp_specialization}')
|
|
#res.append(f'enable_persistent: {self.enable_persistent}')
|
|
return ', '.join(res)
|
|
|
|
|
|
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, restore_value=None, verbose=False, warmup=25, rep=100):
|
|
"""
|
|
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
|
|
|
.. highlight:: python
|
|
.. code-block:: python
|
|
|
|
@triton.autotune(configs=[
|
|
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
|
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
|
],
|
|
key=['x_size'] # the two above configs will be evaluated anytime
|
|
# the value of x_size changes
|
|
)
|
|
@triton.jit
|
|
def kernel(x_ptr, x_size, **META):
|
|
BLOCK_SIZE = META['BLOCK_SIZE']
|
|
:note: When all the configurations are evaluated, the kernel will run multiple times.
|
|
This means that whatever value the kernel updates will be updated multiple times.
|
|
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
|
resets the value of the provided tensor to `zero` before running any configuration.
|
|
:param configs: a list of :code:`triton.Config` objects
|
|
:type configs: list[triton.Config]
|
|
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
|
:type key: list[str]
|
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
|
'top_k': number of configs to bench
|
|
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It takes configs:List[Config] as its input, and returns pruned configs.
|
|
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
|
:type reset_to_zero: list[str]
|
|
:param restore_value: a list of argument names whose value will be restored after evaluating any configs.
|
|
:type restore_value: list[str]
|
|
:param warmup: Warmup time (in ms) to pass to benchmarking, defaults to 25.
|
|
:type warmup: int
|
|
:param rep: Repetition time (in ms) to pass to benchmarking, defaults to 100.
|
|
:type rep: int
|
|
:param verbose: a boolean that controls whether the best_config for each key is printed
|
|
:type verbose: bool
|
|
"""
|
|
|
|
def decorator(fn):
|
|
return Autotuner(fn, fn.arg_names, configs, key, verbose, reset_to_zero, restore_value, prune_configs_by, warmup, rep)
|
|
|
|
return decorator
|
|
|
|
|
|
class Heuristics(KernelInterface):
|
|
|
|
def __init__(self, fn, arg_names, values) -> None:
|
|
self.fn = fn
|
|
self.values = values
|
|
self.arg_names = arg_names
|
|
|
|
def run(self, *args, **kwargs):
|
|
for v, heur in self.values.items():
|
|
kwargs[v] = heur({**dict(zip(self.arg_names, args)), **kwargs})
|
|
return self.fn.run(*args, **kwargs)
|
|
|
|
|
|
def heuristics(values):
|
|
"""
|
|
Decorator for specifying how the values of certain meta-parameters may be computed.
|
|
This is useful for cases where auto-tuning is prohibitevely expensive, or just not applicable.
|
|
|
|
.. highlight:: python
|
|
.. code-block:: python
|
|
|
|
@triton.heuristics(values={'BLOCK_SIZE': lambda args: 2 ** int(math.ceil(math.log2(args[1])))})
|
|
@triton.jit
|
|
def kernel(x_ptr, x_size, **META):
|
|
BLOCK_SIZE = META['BLOCK_SIZE'] # smallest power-of-two >= x_size
|
|
:param values: a dictionary of meta-parameter names and functions that compute the value of the meta-parameter.
|
|
each such function takes a list of positional arguments as input.
|
|
:type values: dict[str, Callable[[list[Any]], Any]]
|
|
"""
|
|
|
|
def decorator(fn):
|
|
return Heuristics(fn, fn.arg_names, values)
|
|
|
|
return decorator
|