mirror of
https://github.com/ROCm/ROCm.git
synced 2026-01-06 21:33:57 -05:00
463 lines
18 KiB
ReStructuredText
463 lines
18 KiB
ReStructuredText
.. meta::
|
|
:description: Learn to validate diffusion model video generation on MI300X, MI350X and MI355X accelerators using
|
|
prebuilt and optimized docker images.
|
|
:keywords: xDiT, diffusion, video, video generation, image, image generation, validate, benchmark
|
|
|
|
************************
|
|
xDiT diffusion inference
|
|
************************
|
|
|
|
.. _xdit-video-diffusion:
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
The `rocm/pytorch-xdit <{{ docker.docker_hub_url }}>`_ Docker image offers
|
|
a prebuilt, optimized environment based on `xDiT
|
|
<https://github.com/xdit-project/xDiT>`_ for benchmarking diffusion model
|
|
video and image generation on AMD Instinct MI355X, MI350X (gfx950), MI325X,
|
|
and MI300X (gfx942) GPUs.
|
|
|
|
The image runs a preview version of ROCm using the new `TheRock
|
|
<https://github.com/ROCm/TheRock>`__ build system and includes the following
|
|
components:
|
|
|
|
.. dropdown:: Software components - {{ docker.pull_tag.split('-')|last }}
|
|
|
|
.. list-table::
|
|
:header-rows: 1
|
|
|
|
* - Software component
|
|
- Version
|
|
|
|
{% for component_name, component_data in docker.components.items() %}
|
|
* - `{{ component_name }} <{{ component_data.url }}>`_
|
|
- {{ component_data.version }}
|
|
{% endfor %}
|
|
|
|
Follow this guide to pull the required image, spin up a container, download the model, and run a benchmark.
|
|
For preview and development releases, see `amdsiloai/pytorch-xdit <https://hub.docker.com/r/amdsiloai/pytorch-xdit>`_.
|
|
|
|
What's new
|
|
==========
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
{% for item in docker.whats_new %}
|
|
* {{ item }}
|
|
{% endfor %}
|
|
|
|
.. _xdit-video-diffusion-supported-models:
|
|
|
|
Supported models
|
|
================
|
|
|
|
The following models are supported for inference performance benchmarking.
|
|
Some instructions, commands, and recommendations in this documentation might
|
|
vary by model -- select one to get started.
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
.. raw:: html
|
|
|
|
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
|
|
<div class="row gx-0">
|
|
<div class="col-2 me-1 px-2 model-param-head">Model</div>
|
|
<div class="row col-10 pe-0">
|
|
{% for model_group in docker.supported_models %}
|
|
<div class="col-6 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.js_tag }}" tabindex="0">{{ model_group.group }}</div>
|
|
{% endfor %}
|
|
</div>
|
|
</div>
|
|
|
|
<div class="row gx-0 pt-1">
|
|
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
|
|
<div class="row col-10 pe-0">
|
|
{% for model_group in docker.supported_models %}
|
|
{% set models = model_group.models %}
|
|
{% for model in models %}
|
|
{% if models|length % 3 == 0 %}
|
|
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
|
|
{% else %}
|
|
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.js_tag }}" data-param-group="{{ model_group.js_tag }}" tabindex="0">{{ model.model }}</div>
|
|
{% endif %}
|
|
{% endfor %}
|
|
{% endfor %}
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
{% for model_group in docker.supported_models %}
|
|
{% for model in model_group.models %}
|
|
|
|
.. container:: model-doc {{ model.js_tag }}
|
|
|
|
.. note::
|
|
|
|
To learn more about your specific model see the `{{ model.model }} model card on Hugging Face <{{ model.url }}>`_
|
|
or visit the `GitHub page <{{ model.github }}>`__. Note that some models require access authorization before use via an
|
|
external license agreement through a third party.
|
|
|
|
{% endfor %}
|
|
{% endfor %}
|
|
|
|
Performance measurements
|
|
========================
|
|
|
|
To evaluate performance, the `Performance results with AMD ROCm software
|
|
<https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8543b7e6d-item-9eda09e707-tab>`__
|
|
page provides reference throughput and serving measurements for inferencing popular AI models.
|
|
|
|
.. important::
|
|
|
|
The performance data presented in `Performance results with AMD ROCm
|
|
software
|
|
<https://www.amd.com/en/developer/resources/rocm-hub/dev-ai/performance-results.html#tabs-a8543b7e6d-item-9eda09e707-tab>`__
|
|
only reflects the latest version of this inference benchmarking environment.
|
|
The listed measurements should not be interpreted as the peak performance
|
|
achievable by AMD Instinct GPUs or ROCm software.
|
|
|
|
System validation
|
|
=================
|
|
|
|
Before running AI workloads, it's important to validate that your AMD hardware is configured
|
|
correctly and performing optimally.
|
|
|
|
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
|
|
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
|
|
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
|
|
before starting.
|
|
|
|
To test for optimal performance, consult the recommended :ref:`System health benchmarks
|
|
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
|
|
system's configuration.
|
|
|
|
Pull the Docker image
|
|
=====================
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
For this tutorial, it's recommended to use the latest ``{{ docker.pull_tag }}`` Docker image.
|
|
Pull the image using the following command:
|
|
|
|
.. code-block:: shell
|
|
|
|
docker pull {{ docker.pull_tag }}
|
|
|
|
Validate and benchmark
|
|
======================
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
Once the image has been downloaded you can follow these steps to
|
|
run benchmarks and generate outputs.
|
|
|
|
{% for model_group in docker.supported_models %}
|
|
{% for model in model_group.models %}
|
|
|
|
.. container:: model-doc {{model.js_tag}}
|
|
|
|
The following commands are written for {{ model.model }}.
|
|
See :ref:`xdit-video-diffusion-supported-models` to switch to another available model.
|
|
|
|
{% endfor %}
|
|
{% endfor %}
|
|
|
|
Choose your setup method
|
|
------------------------
|
|
|
|
You can either use an existing Hugging Face cache or download the model fresh inside the container.
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
{% for model_group in docker.supported_models %}
|
|
{% for model in model_group.models %}
|
|
.. container:: model-doc {{model.js_tag}}
|
|
|
|
.. tab-set::
|
|
|
|
.. tab-item:: Option 1: Use existing Hugging Face cache
|
|
|
|
If you already have models downloaded on your host system, you can mount your existing cache.
|
|
|
|
1. Set your Hugging Face cache location.
|
|
|
|
.. code-block:: shell
|
|
|
|
export HF_HOME=/your/hf_cache/location
|
|
|
|
2. Download the model (if not already cached).
|
|
|
|
.. code-block:: shell
|
|
|
|
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
|
|
|
|
3. Launch the container with mounted cache.
|
|
|
|
.. code-block:: shell
|
|
|
|
docker run \
|
|
-it --rm \
|
|
--cap-add=SYS_PTRACE \
|
|
--security-opt seccomp=unconfined \
|
|
--user root \
|
|
--device=/dev/kfd \
|
|
--device=/dev/dri \
|
|
--group-add video \
|
|
--ipc=host \
|
|
--network host \
|
|
--privileged \
|
|
--shm-size 128G \
|
|
--name pytorch-xdit \
|
|
-e HSA_NO_SCRATCH_RECLAIM=1 \
|
|
-e OMP_NUM_THREADS=16 \
|
|
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
|
-e HF_HOME=/app/huggingface_models \
|
|
-v $HF_HOME:/app/huggingface_models \
|
|
{{ docker.pull_tag }}
|
|
|
|
.. tab-item:: Option 2: Download inside container
|
|
|
|
If you prefer to keep the container self-contained or don't have an existing cache.
|
|
|
|
1. Launch the container
|
|
|
|
.. code-block:: shell
|
|
|
|
docker run \
|
|
-it --rm \
|
|
--cap-add=SYS_PTRACE \
|
|
--security-opt seccomp=unconfined \
|
|
--user root \
|
|
--device=/dev/kfd \
|
|
--device=/dev/dri \
|
|
--group-add video \
|
|
--ipc=host \
|
|
--network host \
|
|
--privileged \
|
|
--shm-size 128G \
|
|
--name pytorch-xdit \
|
|
-e HSA_NO_SCRATCH_RECLAIM=1 \
|
|
-e OMP_NUM_THREADS=16 \
|
|
-e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
|
{{ docker.pull_tag }}
|
|
|
|
2. Inside the container, set the Hugging Face cache location and download the model.
|
|
|
|
.. code-block:: shell
|
|
|
|
export HF_HOME=/app/huggingface_models
|
|
huggingface-cli download {{ model.model_repo }} {% if model.revision %} --revision {{ model.revision }} {% endif %}
|
|
|
|
.. warning::
|
|
|
|
Models will be downloaded to the container's filesystem and will be lost when the container is removed unless you persist the data with a volume.
|
|
{% endfor %}
|
|
{% endfor %}
|
|
|
|
Run inference
|
|
=============
|
|
|
|
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/inference/xdit-inference-models.yaml
|
|
|
|
{% set docker = data.docker %}
|
|
|
|
{% for model_group in docker.supported_models %}
|
|
{% for model in model_group.models %}
|
|
|
|
.. container:: model-doc {{ model.js_tag }}
|
|
|
|
.. tab-set::
|
|
|
|
.. tab-item:: MAD-integrated benchmarking
|
|
|
|
1. Clone the ROCm Model Automation and Dashboarding (`<https://github.com/ROCm/MAD>`__) repository to a local
|
|
directory and install the required packages on the host machine.
|
|
|
|
.. code-block:: shell
|
|
|
|
git clone https://github.com/ROCm/MAD
|
|
cd MAD
|
|
pip install -r requirements.txt
|
|
|
|
2. On the host machine, use this command to run the performance benchmark test on
|
|
the `{{model.model}} <{{ model.url }}>`_ model using one node.
|
|
|
|
.. code-block:: shell
|
|
|
|
export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
|
|
madengine run \
|
|
--tags {{model.mad_tag}} \
|
|
--keep-model-dir \
|
|
--live-output
|
|
|
|
MAD launches a Docker container with the name
|
|
``container_ci-{{model.mad_tag}}``. The throughput and serving reports of the
|
|
model are collected in the following paths: ``{{ model.mad_tag }}_throughput.csv``
|
|
and ``{{ model.mad_tag }}_serving.csv``.
|
|
|
|
.. tab-item:: Standalone benchmarking
|
|
|
|
To run the benchmarks for {{ model.model }}, use the following command:
|
|
|
|
.. code-block:: shell
|
|
{% if model.model == "Hunyuan Video" %}
|
|
cd /app/Hunyuanvideo
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 run.py \
|
|
--model {{ model.model_repo }} \
|
|
--prompt "In the large cage, two puppies were wagging their tails at each other." \
|
|
--height 720 --width 1280 --num_frames 129 \
|
|
--num_inference_steps 50 --warmup_steps 1 --n_repeats 1 \
|
|
--ulysses_degree 8 \
|
|
--enable_tiling --enable_slicing \
|
|
--use_torch_compile \
|
|
--bench_output results
|
|
|
|
{% endif %}
|
|
{% if model.model == "Wan2.1" %}
|
|
cd /app/Wan
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/Wan/run.py \
|
|
--task i2v \
|
|
--height 720 \
|
|
--width 1280 \
|
|
--model {{ model.model_repo }} \
|
|
--img_file_path /app/Wan/i2v_input.JPG \
|
|
--ulysses_degree 8 \
|
|
--seed 42 \
|
|
--num_frames 81 \
|
|
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
|
|
--num_repetitions 1 \
|
|
--num_inference_steps 40 \
|
|
--use_torch_compile
|
|
|
|
{% endif %}
|
|
{% if model.model == "Wan2.2" %}
|
|
cd /app/Wan
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/Wan/run.py \
|
|
--task i2v \
|
|
--height 720 \
|
|
--width 1280 \
|
|
--model {{ model.model_repo }} \
|
|
--img_file_path /app/Wan/i2v_input.JPG \
|
|
--ulysses_degree 8 \
|
|
--seed 42 \
|
|
--num_frames 81 \
|
|
--prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." \
|
|
--num_repetitions 1 \
|
|
--num_inference_steps 40 \
|
|
--use_torch_compile
|
|
|
|
{% endif %}
|
|
|
|
{% if model.model == "FLUX.1" %}
|
|
cd /app/Flux
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/Flux/run.py \
|
|
--model {{ model.model_repo }} \
|
|
--seed 42 \
|
|
--prompt "A small cat" \
|
|
--height 1024 \
|
|
--width 1024 \
|
|
--num_inference_steps 25 \
|
|
--max_sequence_length 256 \
|
|
--warmup_steps 5 \
|
|
--no_use_resolution_binning \
|
|
--ulysses_degree 8 \
|
|
--use_torch_compile \
|
|
--num_repetitions 50
|
|
|
|
{% endif %}
|
|
|
|
{% if model.model == "FLUX.1 Kontext" %}
|
|
cd /app/Flux
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/Flux/run_usp.py \
|
|
--model {{ model.model_repo }} \
|
|
--seed 42 \
|
|
--prompt "Add a cool hat to the cat" \
|
|
--height 1024 \
|
|
--width 1024 \
|
|
--num_inference_steps 30 \
|
|
--max_sequence_length 512 \
|
|
--warmup_steps 5 \
|
|
--no_use_resolution_binning \
|
|
--ulysses_degree 8 \
|
|
--use_torch_compile \
|
|
--img_file_path /app/Flux/cat.png \
|
|
--model_type flux_kontext \
|
|
--guidance_scale 2.5 \
|
|
--num_repetitions 25
|
|
|
|
{% endif %}
|
|
|
|
{% if model.model == "FLUX.2" %}
|
|
cd /app/Flux
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/Flux/run_usp.py \
|
|
--model {{ model.model_repo }} \
|
|
--seed 42 \
|
|
--prompt "Add a cool hat to the cat" \
|
|
--height 1024 \
|
|
--width 1024 \
|
|
--num_inference_steps 50 \
|
|
--max_sequence_length 512 \
|
|
--warmup_steps 5 \
|
|
--no_use_resolution_binning \
|
|
--ulysses_degree 8 \
|
|
--use_torch_compile \
|
|
--img_file_paths /app/Flux/cat.png \
|
|
--model_type flux2 \
|
|
--guidance_scale 4.0 \
|
|
--num_repetitions 25
|
|
|
|
{% endif %}
|
|
|
|
{% if model.model == "stable-diffusion-3.5-large" %}
|
|
cd /app/StableDiffusion3.5
|
|
mkdir results
|
|
|
|
torchrun --nproc_per_node=8 /app/StableDiffusion3.5/run.py \
|
|
--model {{ model.model_repo }} \
|
|
--num_inference_steps 28 \
|
|
--prompt "A capybara holding a sign that reads Hello World" \
|
|
--use_torch_compile \
|
|
--pipefusion_parallel_degree 4 \
|
|
--use_cfg_parallel \
|
|
--num_repetitions 50 \
|
|
--dtype torch.float16 \
|
|
--output_path results
|
|
|
|
{% endif %}
|
|
|
|
The generated video will be stored under the results directory. For the actual benchmark step runtimes, see {% if model.model == "Hunyuan Video" %}stdout.{% elif model.model in ["Wan2.1", "Wan2.2"] %}results/outputs/rank0_*.json{% elif model.model in ["FLUX.1", "FLUX.1 Kontext", "FLUX.2"] %}results/timing.json{% elif model.model == "stable-diffusion-3.5-large"%}benchmark_results.csv{% endif %}
|
|
|
|
{% if model.model == "FLUX.1" %}You may also use ``run_usp.py`` which implements USP without modifying the default diffusers pipeline. {% endif %}
|
|
|
|
{% endfor %}
|
|
{% endfor %}
|
|
|
|
Previous versions
|
|
=================
|
|
|
|
See :doc:`benchmark-docker/previous-versions/xdit-history` to find documentation for previous releases
|
|
of xDiT diffusion inference performance testing.
|