mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
This PR merges the `triton-mlir` branch, in which we have been quietly rewriting the Triton backend from scratch to increase maintainability, stability and ultimately performance. Changes to the runtime are minimal, and this new version aims to remain backward-compatible with the previous commit. The legacy backend is now officially deprecated, but can still be accessed via the `legacy-backend` tag. Co-authored-by: Keren Zhou <kerenzhou@openai.com> Co-authored-by: Yan Chunwei <yanchunwei@outlook.com> Co-authored-by: goostavz <109190422+goostavz@users.noreply.github.com> Co-authored-by: Shintaro Iwasaki <siwasaki@fb.com> Co-authored-by: Yan Da <dyanab@connect.ust.hk> Co-authored-by: Jun Yang <yangjunpro@gmail.com> Co-authored-by: Ian Bearman <ianb@microsoft.com> Co-authored-by: Jason Ansel <jansel@jansel.net> Co-authored-by: Qingyi Liu <qingyil@nvidia.com> Co-authored-by: ben-zhang-609 <110140741+ben-zhang-609@users.noreply.github.com> Co-authored-by: Chenggang Zhao <lyricz@yeah.net> Co-authored-by: ben-zhang-609 <benzh609@gmail.com> Co-authored-by: dongdongl <dongdongl@nvidia.com>
1745 lines
66 KiB
Python
1745 lines
66 KiB
Python
from __future__ import annotations
|
|
|
|
import ast
|
|
import contextlib
|
|
import functools
|
|
import hashlib
|
|
import io
|
|
import json
|
|
import os
|
|
import re
|
|
import shutil
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import tempfile
|
|
import warnings
|
|
from collections import namedtuple
|
|
from pathlib import Path
|
|
from sysconfig import get_paths
|
|
from typing import Any, Callable, Dict, Tuple, Union
|
|
|
|
import setuptools
|
|
import torch
|
|
from filelock import FileLock
|
|
|
|
import triton
|
|
import triton._C.libtriton.triton as _triton
|
|
from . import impl
|
|
from .tools.disasm import extract
|
|
|
|
|
|
def str_to_ty(name):
|
|
if name[0] == "*":
|
|
ty = str_to_ty(name[1:])
|
|
return triton.language.pointer_type(ty)
|
|
tys = {
|
|
"fp8": triton.language.float8,
|
|
"fp16": triton.language.float16,
|
|
"bf16": triton.language.bfloat16,
|
|
"fp32": triton.language.float32,
|
|
"fp64": triton.language.float64,
|
|
"i1": triton.language.int1,
|
|
"i8": triton.language.int8,
|
|
"i16": triton.language.int16,
|
|
"i32": triton.language.int32,
|
|
"i64": triton.language.int64,
|
|
"u8": triton.language.uint8,
|
|
"u16": triton.language.uint16,
|
|
"u32": triton.language.uint32,
|
|
"u64": triton.language.uint64,
|
|
"B": triton.language.int1,
|
|
}
|
|
return tys[name]
|
|
|
|
|
|
def mangle_ty(ty):
|
|
if ty.is_ptr():
|
|
return 'P' + mangle_ty(ty.element_ty)
|
|
if ty.is_int():
|
|
return 'i' + str(ty.int_bitwidth)
|
|
if ty.is_fp8():
|
|
return 'fp8'
|
|
if ty.is_fp16():
|
|
return 'fp16'
|
|
if ty.is_bf16():
|
|
return 'bf16'
|
|
if ty.is_fp32():
|
|
return 'fp32'
|
|
if ty.is_fp64():
|
|
return 'fp64'
|
|
if ty.is_block():
|
|
elt = mangle_ty(ty.scalar)
|
|
shape = '_'.join(map(str, ty.shape))
|
|
return f'{elt}S{shape}S'
|
|
if ty.is_void():
|
|
return 'V'
|
|
assert False, "Unsupported type"
|
|
|
|
|
|
def mangle_fn(name, arg_tys, constants):
|
|
# doesn't mangle ret type, which must be a function of arg tys
|
|
mangled_arg_names = '_'.join([mangle_ty(ty) for ty in arg_tys])
|
|
mangled_constants = '_'.join([f'{i}c{repr(constants[i])}' for i in sorted(constants)])
|
|
mangled_constants = mangled_constants.replace('.', '_d_')
|
|
mangled_constants = mangled_constants.replace("'", '_sq_')
|
|
ret = f'{name}__{mangled_arg_names}__{mangled_constants}'
|
|
return ret
|
|
|
|
|
|
class enter_sub_region:
|
|
def __init__(self, generator: CodeGenerator):
|
|
self.generator = generator
|
|
|
|
def __enter__(self):
|
|
# record lscope & local_defs in the parent scope
|
|
self.liveins = self.generator.lscope.copy()
|
|
self.prev_defs = self.generator.local_defs.copy()
|
|
self.generator.local_defs = {}
|
|
self.insert_block = self.generator.builder.get_insertion_block()
|
|
return self.liveins, self.insert_block
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
self.generator.builder.set_insertion_point_to_end(self.insert_block)
|
|
self.generator.lscope = self.liveins
|
|
self.generator.local_defs = self.prev_defs
|
|
|
|
|
|
class CodeGenerator(ast.NodeVisitor):
|
|
def __init__(self, context, prototype, gscope, attributes, constants, function_name, module=None, is_kernel=False, function_types=dict()):
|
|
self.builder = _triton.ir.builder(context)
|
|
self.module = self.builder.create_module() if module is None else module
|
|
self.function_ret_types = function_types
|
|
self.prototype = prototype
|
|
self.gscope = gscope
|
|
self.lscope = dict()
|
|
self.attributes = attributes
|
|
self.constants = constants
|
|
self.function_name = function_name
|
|
self.is_kernel = is_kernel
|
|
self.last_node = None
|
|
self.builtins = {
|
|
'range': range,
|
|
'min': triton.language.minimum,
|
|
'float': float,
|
|
'int': int,
|
|
'print': print,
|
|
'isinstance': isinstance,
|
|
'getattr': getattr,
|
|
}
|
|
# SSA-construction
|
|
# name => triton.language.tensor
|
|
self.local_defs: Dict[str, triton.language.tensor] = {}
|
|
self.global_uses: Dict[str, triton.language.tensor] = {}
|
|
|
|
def get_value(self, name):
|
|
''' This function:
|
|
1. make sure `name` is defined
|
|
2. if `name` is triton.language.tensor, get stored tensor by calling
|
|
`self._get_tensor()`
|
|
'''
|
|
# search node.id in local scope
|
|
ret = None
|
|
if name in self.lscope:
|
|
ret = self.lscope[name]
|
|
if name not in self.local_defs:
|
|
self.global_uses[name] = ret
|
|
# search node.id in global scope
|
|
elif name in self.gscope:
|
|
ret = self.gscope[name]
|
|
# search node.id in builtins
|
|
elif name in self.builtins:
|
|
ret = self.builtins[name]
|
|
else:
|
|
raise ValueError(f'{name} is not defined')
|
|
return ret
|
|
|
|
def set_value(self, name: str,
|
|
value: Union[triton.language.tensor, triton.language.constexpr]) -> None:
|
|
''' This function:
|
|
called by visit_Assign() & visit_FuncDef() to store left value (lvalue)
|
|
1. record local defined name (FIXME: should consider control flow)
|
|
2. store tensor in self.lvalue
|
|
'''
|
|
self.lscope[name] = value
|
|
self.local_defs[name] = value
|
|
|
|
def is_triton_tensor(self, value):
|
|
return isinstance(value, triton.language.tensor)
|
|
|
|
#
|
|
# AST visitor
|
|
#
|
|
def visit_compound_statement(self, stmts):
|
|
for stmt in stmts:
|
|
self.last_ret_type = self.visit(stmt)
|
|
if isinstance(stmt, ast.Return):
|
|
break
|
|
return stmts and isinstance(stmt, ast.Return)
|
|
|
|
def visit_Module(self, node):
|
|
ast.NodeVisitor.generic_visit(self, node)
|
|
|
|
def visit_List(self, node):
|
|
ctx = self.visit(node.ctx)
|
|
assert ctx is None
|
|
elts = [self.visit(elt) for elt in node.elts]
|
|
return elts
|
|
|
|
# By design, only non-kernel functions can return
|
|
def visit_Return(self, node):
|
|
ret_value = self.visit(node.value)
|
|
if ret_value is None:
|
|
self.builder.ret([])
|
|
return None
|
|
if isinstance(ret_value, tuple):
|
|
ret_values = [triton.language.core._to_tensor(v, self.builder) for v in ret_value]
|
|
ret_types = [v.type for v in ret_values]
|
|
self.builder.ret([v.handle for v in ret_values])
|
|
return tuple(ret_types)
|
|
else:
|
|
ret = triton.language.core._to_tensor(ret_value, self.builder)
|
|
self.builder.ret([ret.handle])
|
|
return ret.type
|
|
|
|
def visit_FunctionDef(self, node):
|
|
arg_names, kwarg_names = self.visit(node.args)
|
|
# initialize defaults
|
|
for i, default_value in enumerate(node.args.defaults):
|
|
arg_node = node.args.args[-i - 1]
|
|
annotation = arg_node.annotation
|
|
name = arg_node.arg
|
|
st_target = ast.Name(id=name, ctx=ast.Store())
|
|
if annotation is None:
|
|
init_node = ast.Assign(targets=[st_target], value=default_value)
|
|
else:
|
|
init_node = ast.AnnAssign(target=st_target, value=default_value, annotation=annotation)
|
|
self.visit(init_node)
|
|
# initialize function
|
|
visibility = "public" if self.is_kernel else "private"
|
|
fn = self.builder.get_or_insert_function(self.module, self.function_name, self.prototype.to_ir(self.builder), visibility)
|
|
self.module.push_back(fn)
|
|
entry = fn.add_entry_block()
|
|
arg_values = []
|
|
idx = 0
|
|
for i, arg_name in enumerate(arg_names):
|
|
if i in self.constants:
|
|
cst = self.constants[i]
|
|
if not isinstance(cst, triton.language.constexpr):
|
|
cst = triton.language.constexpr(self.constants[i])
|
|
arg_values.append(cst)
|
|
continue
|
|
else:
|
|
if i in self.attributes:
|
|
fn.set_arg_attr(idx, "tt.divisibility", self.attributes[i][1])
|
|
arg_values.append(triton.language.tensor(fn.args(idx), self.prototype.param_types[idx]))
|
|
idx += 1
|
|
|
|
insert_pt = self.builder.get_insertion_block()
|
|
for arg_name, arg_value in zip(arg_names, arg_values):
|
|
self.set_value(arg_name, arg_value)
|
|
self.builder.set_insertion_point_to_start(entry)
|
|
# visit function body
|
|
has_ret = self.visit_compound_statement(node.body)
|
|
# finalize function
|
|
if not has_ret:
|
|
self.builder.ret([])
|
|
else:
|
|
# update return type
|
|
if isinstance(self.last_ret_type, tuple):
|
|
self.prototype.ret_types = list(self.last_ret_type)
|
|
fn.reset_type(self.prototype.to_ir(self.builder))
|
|
else:
|
|
self.prototype.ret_types = [self.last_ret_type]
|
|
fn.reset_type(self.prototype.to_ir(self.builder))
|
|
if insert_pt:
|
|
self.builder.set_insertion_point_to_end(insert_pt)
|
|
|
|
def visit_arguments(self, node):
|
|
arg_names = []
|
|
for arg in node.args:
|
|
arg_names += [self.visit(arg)]
|
|
kwarg_names = self.visit(node.kwarg)
|
|
return arg_names, kwarg_names
|
|
|
|
def visit_arg(self, node):
|
|
ast.NodeVisitor.generic_visit(self, node)
|
|
return node.arg
|
|
|
|
def visit_AnnAssign(self, node):
|
|
# extract attributes
|
|
annotation = self.visit(node.annotation)
|
|
target = self.visit(node.target)
|
|
value = self.visit(node.value)
|
|
# constexpr
|
|
if annotation == triton.language.constexpr:
|
|
if target in self.lscope:
|
|
raise ValueError(f'{target} is already defined.'
|
|
f' constexpr cannot be reassigned.')
|
|
if not isinstance(value, triton.language.constexpr):
|
|
value = triton.language.constexpr(value)
|
|
self.lscope[target] = value
|
|
return self.lscope[target]
|
|
# default: call visit_Assign
|
|
return self.visit_Assign(node)
|
|
|
|
def visit_Assign(self, node):
|
|
_names = []
|
|
for target in node.targets:
|
|
_names += [self.visit(target)]
|
|
assert len(_names) == 1
|
|
names = _names[0]
|
|
values = self.visit(node.value)
|
|
if not isinstance(names, tuple):
|
|
names = [names]
|
|
if not isinstance(values, tuple):
|
|
values = [values]
|
|
for name, value in zip(names, values):
|
|
# by default, constexpr are assigned into python variable
|
|
if isinstance(value, triton.language.constexpr):
|
|
value = value.value
|
|
if not isinstance(value, triton.language.tensor):
|
|
value = triton.language.core._to_tensor(value, self.builder)
|
|
self.set_value(name, value)
|
|
|
|
def visit_AugAssign(self, node):
|
|
name = node.target.id
|
|
lhs = ast.Name(id=name, ctx=ast.Load())
|
|
rhs = ast.BinOp(lhs, node.op, node.value)
|
|
assign = ast.Assign(targets=[node.target], value=rhs)
|
|
self.visit(assign)
|
|
return self.get_value(name)
|
|
|
|
def visit_Name(self, node):
|
|
if type(node.ctx) == ast.Store:
|
|
return node.id
|
|
return self.get_value(node.id)
|
|
|
|
def visit_Store(self, node):
|
|
ast.NodeVisitor.generic_visit(self, node)
|
|
|
|
def visit_Load(self, node):
|
|
ast.NodeVisitor.generic_visit(self, node)
|
|
|
|
def visit_Tuple(self, node):
|
|
args = [self.visit(x) for x in node.elts]
|
|
return tuple(args)
|
|
|
|
def visit_BinOp(self, node):
|
|
lhs = self.visit(node.left)
|
|
rhs = self.visit(node.right)
|
|
fn = {
|
|
ast.Add: '__add__',
|
|
ast.Sub: '__sub__',
|
|
ast.Mult: '__mul__',
|
|
ast.Div: '__truediv__',
|
|
ast.FloorDiv: '__floordiv__',
|
|
ast.Mod: '__mod__',
|
|
ast.Pow: '__pow__',
|
|
ast.LShift: '__lshift__',
|
|
ast.RShift: '__rshift__',
|
|
ast.BitAnd: '__and__',
|
|
ast.BitOr: '__or__',
|
|
ast.BitXor: '__xor__',
|
|
}[type(node.op)]
|
|
if self.is_triton_tensor(lhs):
|
|
return getattr(lhs, fn)(rhs, _builder=self.builder)
|
|
elif self.is_triton_tensor(rhs):
|
|
fn = fn[:2] + 'r' + fn[2:]
|
|
return getattr(rhs, fn)(lhs, _builder=self.builder)
|
|
else:
|
|
return getattr(lhs, fn)(rhs)
|
|
|
|
def visit_If(self, node):
|
|
cond = self.visit(node.test)
|
|
if isinstance(cond, triton.language.tensor):
|
|
cond = cond.to(triton.language.int1, _builder=self.builder)
|
|
with enter_sub_region(self) as sr:
|
|
liveins, ip_block = sr
|
|
liveins_copy = liveins.copy()
|
|
then_block = self.builder.create_block()
|
|
self.builder.set_insertion_point_to_start(then_block)
|
|
self.visit_compound_statement(node.body)
|
|
then_defs = self.local_defs.copy()
|
|
|
|
# when need an else block when:
|
|
# 1. we have an orelse node
|
|
# or
|
|
# 2. the then block defines new variable
|
|
else_defs = {}
|
|
if then_defs or node.orelse:
|
|
if node.orelse:
|
|
self.lscope = liveins
|
|
self.local_defs = {}
|
|
else_block = self.builder.create_block()
|
|
self.builder.set_insertion_point_to_end(else_block)
|
|
self.visit_compound_statement(node.orelse)
|
|
else_defs = self.local_defs.copy()
|
|
else:
|
|
# collect else_defs
|
|
for name in then_defs:
|
|
if name in liveins:
|
|
assert self.is_triton_tensor(then_defs[name])
|
|
assert self.is_triton_tensor(liveins[name])
|
|
else_defs[name] = liveins[name]
|
|
# collect yields
|
|
names = []
|
|
ret_types = []
|
|
for then_name in then_defs:
|
|
for else_name in else_defs:
|
|
if then_name == else_name:
|
|
if then_defs[then_name].type == else_defs[else_name].type:
|
|
names.append(then_name)
|
|
ret_types.append(then_defs[then_name].type)
|
|
|
|
# defined in else block but not in then block
|
|
# to find in parent scope and yield them
|
|
for else_name in else_defs:
|
|
if else_name in liveins and else_name not in then_defs:
|
|
if else_defs[else_name].type == liveins[else_name].type:
|
|
names.append(else_name)
|
|
ret_types.append(else_defs[else_name].type)
|
|
then_defs[else_name] = liveins_copy[else_name]
|
|
self.builder.set_insertion_point_to_end(ip_block)
|
|
|
|
if then_defs or node.orelse: # with else block
|
|
if_op = self.builder.create_if_op([ty.to_ir(self.builder) for ty in ret_types], cond.handle, True)
|
|
then_block.merge_block_before(if_op.get_then_block())
|
|
self.builder.set_insertion_point_to_end(if_op.get_then_block())
|
|
if len(names) > 0:
|
|
self.builder.create_yield_op([then_defs[n].handle for n in names])
|
|
if not node.orelse:
|
|
else_block = if_op.get_else_block()
|
|
else:
|
|
else_block.merge_block_before(if_op.get_else_block())
|
|
self.builder.set_insertion_point_to_end(if_op.get_else_block())
|
|
if len(names) > 0:
|
|
self.builder.create_yield_op([else_defs[n].handle for n in names])
|
|
else: # no else block
|
|
if_op = self.builder.create_if_op([ty.to_ir(self.builder) for ty in ret_types], cond.handle, False)
|
|
then_block.merge_block_before(if_op.get_then_block())
|
|
|
|
# update values yielded by IfOp
|
|
for i, name in enumerate(names):
|
|
new_tensor = triton.language.core.tensor(if_op.get_result(i), ret_types[i])
|
|
self.lscope[name] = new_tensor
|
|
self.local_defs[name] = new_tensor
|
|
|
|
else:
|
|
if isinstance(cond, triton.language.constexpr):
|
|
cond = cond.value
|
|
if cond:
|
|
self.visit_compound_statement(node.body)
|
|
else:
|
|
self.visit_compound_statement(node.orelse)
|
|
|
|
def visit_IfExp(self, node):
|
|
cond = self.visit(node.test)
|
|
if cond.value:
|
|
return self.visit(node.body)
|
|
else:
|
|
return self.visit(node.orelse)
|
|
|
|
def visit_Pass(self, node):
|
|
pass
|
|
|
|
def visit_Compare(self, node):
|
|
assert len(node.comparators) == 1
|
|
assert len(node.ops) == 1
|
|
lhs = self.visit(node.left)
|
|
rhs = self.visit(node.comparators[0])
|
|
if isinstance(lhs, triton.language.constexpr):
|
|
lhs = lhs.value
|
|
if isinstance(rhs, triton.language.constexpr):
|
|
rhs = rhs.value
|
|
if type(node.ops[0]) == ast.Is:
|
|
return triton.language.constexpr(lhs is rhs)
|
|
if type(node.ops[0]) == ast.IsNot:
|
|
return triton.language.constexpr(lhs is not rhs)
|
|
fn = {
|
|
ast.Eq: '__eq__',
|
|
ast.NotEq: '__ne__',
|
|
ast.Lt: '__lt__',
|
|
ast.LtE: '__le__',
|
|
ast.Gt: '__gt__',
|
|
ast.GtE: '__ge__',
|
|
}[type(node.ops[0])]
|
|
if self.is_triton_tensor(lhs):
|
|
return getattr(lhs, fn)(rhs, _builder=self.builder)
|
|
elif self.is_triton_tensor(rhs):
|
|
fn = fn[:2] + 'r' + fn[2:]
|
|
return getattr(rhs, fn)(lhs, _builder=self.builder)
|
|
else:
|
|
return getattr(lhs, fn)(rhs)
|
|
|
|
def visit_UnaryOp(self, node):
|
|
op = self.visit(node.operand)
|
|
if type(node.op) == ast.Not:
|
|
assert isinstance(op, triton.language.constexpr), "`not` only supported for constexpr at the moment"
|
|
return triton.language.constexpr(not op)
|
|
fn = {
|
|
ast.USub: '__neg__',
|
|
ast.UAdd: '__pos__',
|
|
ast.Invert: '__invert__',
|
|
}[type(node.op)]
|
|
if self.is_triton_tensor(op):
|
|
return getattr(op, fn)(_builder=self.builder)
|
|
return getattr(op, fn)()
|
|
|
|
def visit_While(self, node):
|
|
with enter_sub_region(self) as sr:
|
|
liveins, insert_block = sr
|
|
|
|
# condition (the before region)
|
|
cond_block = self.builder.create_block()
|
|
self.builder.set_insertion_point_to_start(cond_block)
|
|
cond = self.visit(node.test)
|
|
|
|
# loop body (the after region)
|
|
loop_block = self.builder.create_block()
|
|
self.builder.set_insertion_point_to_start(loop_block)
|
|
self.visit_compound_statement(node.body)
|
|
loop_defs = self.local_defs
|
|
|
|
# collect loop-carried values
|
|
names = []
|
|
ret_types = []
|
|
init_args = []
|
|
yields = []
|
|
for name in loop_defs:
|
|
if name in liveins:
|
|
# We should not def new constexpr
|
|
assert self.is_triton_tensor(loop_defs[name])
|
|
assert self.is_triton_tensor(liveins[name])
|
|
if loop_defs[name].type == liveins[name].type:
|
|
# these are loop-carried values
|
|
names.append(name)
|
|
ret_types.append(loop_defs[name].type)
|
|
init_args.append(liveins[name])
|
|
yields.append(loop_defs[name])
|
|
|
|
self.builder.set_insertion_point_to_end(insert_block)
|
|
while_op = self.builder.create_while_op([ty.to_ir(self.builder) for ty in ret_types],
|
|
[arg.handle for arg in init_args])
|
|
# merge the condition region
|
|
before_block = self.builder.create_block_with_parent(while_op.get_before(),
|
|
[ty.to_ir(self.builder) for ty in ret_types])
|
|
cond_block.merge_block_before(before_block)
|
|
self.builder.set_insertion_point_to_end(before_block)
|
|
# create ConditionOp: e.g., scf.condition(%cond) %arg0, %arg1, ...
|
|
self.builder.create_condition_op(cond.handle, [before_block.arg(i) for i in range(len(init_args))])
|
|
# merge the loop body
|
|
after_block = self.builder.create_block_with_parent(while_op.get_after(),
|
|
[ty.to_ir(self.builder) for ty in ret_types])
|
|
loop_block.merge_block_before(after_block)
|
|
self.builder.set_insertion_point_to_end(after_block)
|
|
self.builder.create_yield_op([y.handle for y in yields])
|
|
|
|
# update global uses in while_op
|
|
for i, name in enumerate(names):
|
|
before_block.replace_use_in_block_with(init_args[i].handle, before_block.arg(i))
|
|
after_block.replace_use_in_block_with(init_args[i].handle, after_block.arg(i))
|
|
|
|
# WhileOp defines new values, update the symbol table (lscope, local_defs)
|
|
for i, name in enumerate(names):
|
|
new_def = triton.language.core.tensor(while_op.get_result(i), ret_types[i])
|
|
self.lscope[name] = new_def
|
|
self.local_defs[name] = new_def
|
|
|
|
for stmt in node.orelse:
|
|
assert False, "Not implemented"
|
|
ast.NodeVisitor.generic_visit(self, stmt)
|
|
|
|
def visit_Subscript(self, node):
|
|
assert node.ctx.__class__.__name__ == "Load"
|
|
lhs = self.visit(node.value)
|
|
slices = self.visit(node.slice)
|
|
if self.is_triton_tensor(lhs):
|
|
return lhs.__getitem__(slices, _builder=self.builder)
|
|
return lhs[slices]
|
|
|
|
def visit_ExtSlice(self, node):
|
|
return [self.visit(dim) for dim in node.dims]
|
|
|
|
def visit_For(self, node):
|
|
iterator = self.visit(node.iter.func)
|
|
if iterator != self.builtins['range']:
|
|
raise RuntimeError('Only `range` iterator currently supported')
|
|
# visit iterator arguments
|
|
# note: only `range` iterator is supported now
|
|
iter_args = [self.visit(arg) for arg in node.iter.args]
|
|
# collect lower bound (lb), upper bound (ub), and step
|
|
lb = iter_args[0] if len(iter_args) > 1 else self.visit(ast.Num(0))
|
|
ub = iter_args[1] if len(iter_args) > 1 else self.visit(node.iter.args[0])
|
|
step = iter_args[2] if len(iter_args) > 2 else self.visit(ast.Num(1))
|
|
# static for loops: all iterator arguments are constexpr
|
|
if isinstance(lb, triton.language.constexpr) and \
|
|
isinstance(ub, triton.language.constexpr) and \
|
|
isinstance(step, triton.language.constexpr):
|
|
sta_range = iterator(lb.value, ub.value, step.value)
|
|
static_unrolling = os.environ.get('TRITON_STATIC_LOOP_UNROLLING', False)
|
|
if static_unrolling and len(sta_range) <= 10:
|
|
for i in sta_range:
|
|
self.lscope[node.target.id] = triton.language.constexpr(i)
|
|
self.visit_compound_statement(node.body)
|
|
for stmt in node.orelse:
|
|
ast.NodeVisitor.generic_visit(self, stmt)
|
|
return
|
|
# handle negative constant step (not supported by scf.for in MLIR)
|
|
negative_step = False
|
|
if isinstance(step, triton.language.constexpr) and step.value < 0:
|
|
step = triton.language.constexpr(-step.value)
|
|
negative_step = True
|
|
lb, ub = ub, lb
|
|
# lb/ub/step might be constexpr, we need to cast them to tensor
|
|
lb = triton.language.core._to_tensor(lb, self.builder).handle
|
|
ub = triton.language.core._to_tensor(ub, self.builder).handle
|
|
step = triton.language.core._to_tensor(step, self.builder).handle
|
|
# ForOp can only accept IndexType as lb/ub/step. Cast integer to Index
|
|
lb = self.builder.create_to_index(lb)
|
|
ub = self.builder.create_to_index(ub)
|
|
step = self.builder.create_to_index(step)
|
|
# Create placeholder for the loop induction variable
|
|
iv = self.builder.create_undef(self.builder.get_int32_ty())
|
|
self.set_value(node.target.id, triton.language.core.tensor(iv, triton.language.core.int32))
|
|
|
|
with enter_sub_region(self) as sr:
|
|
liveins, insert_block = sr
|
|
|
|
# create loop body block
|
|
block = self.builder.create_block()
|
|
self.builder.set_insertion_point_to_start(block)
|
|
|
|
# visit loop body
|
|
self.visit_compound_statement(node.body)
|
|
|
|
# If a variable (name) is defined in both its parent & itself, then it's
|
|
# a loop-carried variable. (They must be of the same type)
|
|
init_args = []
|
|
yields = []
|
|
names = []
|
|
for name in self.local_defs:
|
|
if name in liveins:
|
|
assert self.is_triton_tensor(self.local_defs[name]), f'{name} is not tensor'
|
|
assert self.is_triton_tensor(liveins[name])
|
|
if self.local_defs[name].type != liveins[name].type:
|
|
local_value = self.local_defs[name]
|
|
self.local_defs[name] = local_value.to(liveins[name].dtype, _builder=self.builder)
|
|
names.append(name)
|
|
init_args.append(triton.language.core._to_tensor(liveins[name], self.builder))
|
|
yields.append(triton.language.core._to_tensor(self.local_defs[name], self.builder))
|
|
|
|
# create ForOp
|
|
self.builder.set_insertion_point_to_end(insert_block)
|
|
for_op = self.builder.create_for_op(lb, ub, step, [arg.handle for arg in init_args])
|
|
block.merge_block_before(for_op.get_body(0))
|
|
|
|
# update induction variable with actual value, and replace all uses
|
|
self.builder.set_insertion_point_to_start(for_op.get_body(0))
|
|
iv = self.builder.create_index_to_si(for_op.get_induction_var())
|
|
if negative_step:
|
|
ub_si = self.builder.create_index_to_si(ub)
|
|
iv = self.builder.create_sub(ub_si, iv)
|
|
self.lscope[node.target.id].handle.replace_all_uses_with(iv)
|
|
self.set_value(node.target.id, triton.language.core.tensor(iv, triton.language.core.int32))
|
|
|
|
# create YieldOp
|
|
self.builder.set_insertion_point_to_end(for_op.get_body(0))
|
|
if len(yields) > 0:
|
|
self.builder.create_yield_op([y.handle for y in yields])
|
|
for_op_region = for_op.get_body(0).get_parent()
|
|
assert for_op_region.size() == 1, "We use SCF, so the loop body should only have one block"
|
|
# replace global uses with block arguments
|
|
for i, name in enumerate(names):
|
|
# arg0 is the induction variable
|
|
for_op.get_body(0).replace_use_in_block_with(init_args[i].handle, for_op.get_body(0).arg(i + 1))
|
|
|
|
# update lscope & local_defs (ForOp defines new values)
|
|
for i, name in enumerate(names):
|
|
self.set_value(name, triton.language.core.tensor(for_op.get_result(i), yields[i].type))
|
|
|
|
for stmt in node.orelse:
|
|
assert False, "Don't know what to do with else after for"
|
|
ast.NodeVisitor.generic_visit(self, stmt)
|
|
|
|
def visit_Slice(self, node):
|
|
lower = self.visit(node.lower)
|
|
upper = self.visit(node.upper)
|
|
step = self.visit(node.step)
|
|
return slice(lower, upper, step)
|
|
|
|
def visit_Index(self, node):
|
|
return self.visit(node.value)
|
|
|
|
def visit_keyword(self, node):
|
|
return {node.arg: self.visit(node.value)}
|
|
|
|
def visit_Call(self, node):
|
|
fn = self.visit(node.func)
|
|
if isinstance(fn, triton.language.constexpr):
|
|
fn = fn.value
|
|
kws = dict()
|
|
for keyword in node.keywords:
|
|
kws.update(self.visit(keyword))
|
|
args = [self.visit(arg) for arg in node.args]
|
|
if isinstance(fn, triton.runtime.JITFunction):
|
|
from inspect import getcallargs
|
|
args = getcallargs(fn.fn, *args, **kws)
|
|
args = [args[name] for name in fn.arg_names]
|
|
args = [arg if isinstance(arg, triton.language.tensor)
|
|
else triton.language.constexpr(arg) for arg in args]
|
|
# generate function def
|
|
attributes = dict()
|
|
constexprs = [i for i, arg in enumerate(args) if isinstance(arg, triton.language.constexpr)]
|
|
constants = {i: args[i] for i in constexprs}
|
|
# generate call
|
|
args = [None if i in constexprs else arg for i, arg in enumerate(args)]
|
|
arg_vals = [arg.handle for arg in args if arg is not None]
|
|
arg_types = [arg.type for arg in args if arg is not None]
|
|
fn_name = mangle_fn(fn.__name__, arg_types, constants)
|
|
# generate function def if necessary
|
|
if not self.module.has_function(fn_name):
|
|
prototype = triton.language.function_type([], arg_types)
|
|
gscope = sys.modules[fn.fn.__module__].__dict__
|
|
generator = CodeGenerator(self.builder.context, prototype, gscope, attributes, constants, module=self.module, function_name=fn_name, function_types=self.function_ret_types)
|
|
generator.visit(fn.parse())
|
|
callee_ret_type = generator.last_ret_type
|
|
self.function_ret_types[fn_name] = callee_ret_type
|
|
else:
|
|
callee_ret_type = self.function_ret_types[fn_name]
|
|
symbol = self.module.get_function(fn_name)
|
|
call_op = self.builder.call(symbol, arg_vals)
|
|
if call_op.get_num_results() == 0 or callee_ret_type is None:
|
|
return None
|
|
elif call_op.get_num_results() == 1:
|
|
return triton.language.tensor(call_op.get_result(0), callee_ret_type)
|
|
else:
|
|
# should return a tuple of tl.tensor
|
|
results = []
|
|
for i in range(call_op.get_num_results()):
|
|
results.append(triton.language.tensor(call_op.get_result(i), callee_ret_type[i]))
|
|
return tuple(results)
|
|
if (hasattr(fn, '__self__') and self.is_triton_tensor(fn.__self__)) \
|
|
or impl.is_builtin(fn):
|
|
return fn(*args, _builder=self.builder, **kws)
|
|
if fn in self.builtins.values():
|
|
args = [arg.value if isinstance(arg, triton.language.constexpr) else arg
|
|
for arg in args]
|
|
return fn(*args, **kws)
|
|
|
|
def visit_Constant(self, node):
|
|
return triton.language.constexpr(node.value)
|
|
|
|
def visit_BoolOp(self, node: ast.BoolOp):
|
|
assert len(node.values) == 2
|
|
lhs = self.visit(node.values[0])
|
|
rhs = self.visit(node.values[1])
|
|
if isinstance(lhs, triton.language.constexpr):
|
|
lhs = lhs.value
|
|
if isinstance(rhs, triton.language.constexpr):
|
|
rhs = rhs.value
|
|
|
|
fn = {
|
|
ast.And: 'logical_and',
|
|
ast.Or: 'logical_or',
|
|
}[type(node.op)]
|
|
|
|
if self.is_triton_tensor(lhs):
|
|
return getattr(lhs, fn)(rhs, _builder=self.builder)
|
|
elif self.is_triton_tensor(rhs):
|
|
fn = fn[:2] + 'r' + fn[2:]
|
|
return getattr(rhs, fn)(lhs, _builder=self.builder)
|
|
else:
|
|
return getattr(lhs, fn)(rhs)
|
|
|
|
if sys.version_info < (3, 8):
|
|
def visit_NameConstant(self, node):
|
|
return triton.language.constexpr(node.value)
|
|
|
|
def visit_Num(self, node):
|
|
return triton.language.constexpr(node.n)
|
|
|
|
def visit_Str(self, node):
|
|
return triton.language.constexpr(ast.literal_eval(node))
|
|
|
|
def visit_Attribute(self, node):
|
|
lhs = self.visit(node.value)
|
|
if isinstance(lhs, triton.language.tensor):
|
|
if node.attr == "T":
|
|
return triton.language.semantic.trans(lhs, builder=self.builder)
|
|
return getattr(lhs, node.attr)
|
|
|
|
def visit_Expr(self, node):
|
|
ast.NodeVisitor.generic_visit(self, node)
|
|
|
|
def visit_NoneType(self, node):
|
|
return None
|
|
|
|
def visit(self, node):
|
|
if node is not None:
|
|
self.last_node = node
|
|
with warnings.catch_warnings():
|
|
# The ast library added visit_Constant and deprecated some other
|
|
# methods but we can't move to that without breaking Python 3.6 and 3.7.
|
|
warnings.simplefilter("ignore", DeprecationWarning) # python 3.9
|
|
warnings.simplefilter("ignore", PendingDeprecationWarning) # python 3.8
|
|
return super().visit(node)
|
|
|
|
def generic_visit(self, node):
|
|
typename = type(node).__name__
|
|
raise NotImplementedError("Unsupported node: {}".format(typename))
|
|
|
|
|
|
class CompilationError(Exception):
|
|
def __init__(self, src, node):
|
|
self.message = f'at {node.lineno}:{node.col_offset}:\n'
|
|
self.message += '\n'.join(src.split('\n')[:node.lineno])
|
|
self.message += '\n' + ' ' * node.col_offset + '^'
|
|
self.src = src
|
|
self.node = node
|
|
super().__init__(self.message)
|
|
|
|
def __reduce__(self):
|
|
# this is necessary to make CompilationError picklable
|
|
return (type(self), (self.src, self.node))
|
|
|
|
|
|
class OutOfResources(Exception):
|
|
def __init__(self, required, limit, name):
|
|
self.message = f'out of resource: {name}, '\
|
|
f'Required: {required}, '\
|
|
f'Hardware limit: {limit}'
|
|
self.message += '. Reducing block sizes or `num_stages` may help.'
|
|
self.required = required
|
|
self.limit = limit
|
|
self.name = name
|
|
super().__init__(self.message)
|
|
|
|
def __reduce__(self):
|
|
# this is necessary to make CompilationError picklable
|
|
return (type(self), (self.required, self.limit, self.name))
|
|
|
|
|
|
def kernel_suffix(signature, specialization):
|
|
# suffix format:
|
|
# <argid><'c' if equal to 1><'d' if divisible by 16>
|
|
suffix = ''
|
|
for i, _ in enumerate(signature):
|
|
suffix += str(i)
|
|
if i in specialization.equal_to_1:
|
|
suffix += 'c'
|
|
if i in specialization.divisible_by_16:
|
|
suffix += 'd'
|
|
return suffix
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# ------------------------------------------------------------------------------
|
|
|
|
|
|
def build_triton_ir(fn, signature, specialization, constants):
|
|
# canonicalize signature
|
|
if isinstance(signature, str):
|
|
signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
|
|
context = _triton.ir.context()
|
|
context.load_triton()
|
|
# create kernel prototype
|
|
cst_key = lambda i: fn.arg_names.index(i) if isinstance(i, str) else i
|
|
constants = {cst_key(key): value for key, value in constants.items()}
|
|
# visit kernel AST
|
|
gscope = fn.__globals__.copy()
|
|
function_name = '_'.join([fn.__name__, kernel_suffix(signature.values(), specialization)])
|
|
tys = list(signature.values())
|
|
new_constants = {k: True if k in tys and tys[k] == "i1" else 1 for k in specialization.equal_to_1}
|
|
new_attrs = {k: ("multiple_of", 16) for k in specialization.divisible_by_16}
|
|
all_constants = constants.copy()
|
|
all_constants.update(new_constants)
|
|
arg_types = [str_to_ty(v) for k, v in signature.items() if k not in constants]
|
|
|
|
prototype = triton.language.function_type([], arg_types)
|
|
generator = CodeGenerator(context, prototype, gscope=gscope, constants=all_constants, function_name=function_name, attributes=new_attrs, is_kernel=True)
|
|
try:
|
|
generator.visit(fn.parse())
|
|
except Exception as e:
|
|
node = generator.last_node
|
|
if node is None or isinstance(e, (NotImplementedError, CompilationError)):
|
|
raise e
|
|
raise CompilationError(fn.src, node) from e
|
|
ret = generator.module
|
|
# module takes ownership of the context
|
|
ret.context = context
|
|
return ret, generator
|
|
|
|
|
|
def optimize_triton_ir(mod):
|
|
pm = _triton.ir.pass_manager(mod.context)
|
|
pm.enable_debug()
|
|
pm.add_inliner_pass()
|
|
pm.add_triton_combine_pass()
|
|
pm.add_canonicalizer_pass()
|
|
pm.add_cse_pass()
|
|
pm.add_licm_pass()
|
|
pm.run(mod)
|
|
return mod
|
|
|
|
|
|
def ast_to_ttir(fn, signature, specialization, constants):
|
|
mod, _ = build_triton_ir(fn, signature, specialization, constants)
|
|
return optimize_triton_ir(mod)
|
|
|
|
|
|
def ttir_to_ttgir(mod, num_warps, num_stages, compute_capability):
|
|
pm = _triton.ir.pass_manager(mod.context)
|
|
pm.add_convert_triton_to_tritongpu_pass(num_warps)
|
|
pm.enable_debug()
|
|
pm.add_coalesce_pass()
|
|
# The combine pass converts blocked layout to mma layout
|
|
# for dot ops so that pipeline can get shared memory swizzled correctly.
|
|
pm.add_triton_gpu_combine_pass(compute_capability)
|
|
pm.add_tritongpu_pipeline_pass(num_stages)
|
|
# Prefetch must be done after pipeline pass because pipeline pass
|
|
# extracts slices from the original tensor.
|
|
pm.add_tritongpu_prefetch_pass()
|
|
pm.add_canonicalizer_pass()
|
|
pm.add_cse_pass()
|
|
pm.add_triton_gpu_combine_pass(compute_capability)
|
|
pm.add_licm_pass()
|
|
pm.add_triton_gpu_combine_pass(compute_capability)
|
|
pm.add_cse_pass()
|
|
pm.run(mod)
|
|
return mod
|
|
|
|
|
|
def add_external_libs(mod, libs):
|
|
for name, path in libs.items():
|
|
if len(name) == 0 or len(path) == 0:
|
|
return
|
|
_triton.add_external_libs(mod, list(libs.keys()), list(libs.values()))
|
|
|
|
|
|
def ttgir_to_llir(mod, extern_libs, compute_capability):
|
|
if extern_libs:
|
|
add_external_libs(mod, extern_libs)
|
|
return _triton.translate_triton_gpu_to_llvmir(mod, compute_capability)
|
|
|
|
|
|
def llir_to_ptx(mod: Any, compute_capability: int, ptx_version: int = None) -> Tuple[str, int]:
|
|
'''
|
|
Translate TritonGPU module to PTX code.
|
|
:param mod: a TritonGPU dialect module
|
|
:return:
|
|
- PTX code
|
|
- shared memory allocation size
|
|
'''
|
|
if ptx_version is None:
|
|
_, cuda_version = path_to_ptxas()
|
|
ptx_version = ptx_get_version(cuda_version)
|
|
return _triton.translate_llvmir_to_ptx(mod, compute_capability, ptx_version)
|
|
|
|
|
|
def ptx_to_cubin(ptx: str, compute_capability: int):
|
|
'''
|
|
Compile TritonGPU module to cubin.
|
|
:param ptx: ptx code
|
|
:param compute_capability: compute capability
|
|
:return: str
|
|
'''
|
|
ptxas, _ = path_to_ptxas()
|
|
return _triton.compile_ptx_to_cubin(ptx, ptxas, compute_capability)
|
|
|
|
|
|
def ptx_get_kernel_name(ptx: str) -> str:
|
|
'''
|
|
Get kernel name from PTX code.
|
|
This Kernel name is required when launching the kernel.
|
|
'''
|
|
# There is a name mangling in PTX codegen, so the original kernel names in Triton IR are not available in PTX/cubin.
|
|
assert ptx
|
|
for line in ptx.split('\n'):
|
|
line = line.strip()
|
|
if line.startswith('// .globl'):
|
|
return line.split()[-1]
|
|
|
|
|
|
@functools.lru_cache
|
|
def ptx_get_version(cuda_version) -> int:
|
|
'''
|
|
Get the highest PTX version supported by the current CUDA driver.
|
|
'''
|
|
assert isinstance(cuda_version, str)
|
|
major, minor = map(int, cuda_version.split('.'))
|
|
version = major * 1000 + minor * 10
|
|
if version >= 11040:
|
|
return 74
|
|
if version >= 11030:
|
|
return 73
|
|
if version >= 11020:
|
|
return 72
|
|
if version >= 11010:
|
|
return 71
|
|
if version >= 11000:
|
|
return 70
|
|
if version >= 10020:
|
|
return 65
|
|
if version >= 10010:
|
|
return 64
|
|
if version >= 10000:
|
|
return 63
|
|
raise RuntimeError("Triton only support CUDA 10.0 or higher")
|
|
|
|
|
|
def path_to_ptxas():
|
|
prefixes = [
|
|
os.environ.get("TRITON_PTXAS_PATH", ""),
|
|
"",
|
|
"/usr",
|
|
os.environ.get('CUDA_PATH', default_cuda_dir())
|
|
]
|
|
for prefix in prefixes:
|
|
ptxas = os.path.join(prefix, "bin", "ptxas")
|
|
if os.path.exists(ptxas):
|
|
result = subprocess.check_output([ptxas, "--version"], stderr=subprocess.STDOUT)
|
|
if result is not None:
|
|
version = re.search(r".*release (\d+\.\d+).*", result.decode("utf-8"), flags=re.MULTILINE)
|
|
if version is not None:
|
|
return ptxas, version.group(1)
|
|
raise RuntimeError("Cannot find ptxas")
|
|
|
|
|
|
instance_descriptor = namedtuple("instance_descriptor", ["divisible_by_16", "equal_to_1"], defaults=[set(), set()])
|
|
|
|
|
|
# ------------------------------------------------------------------------------
|
|
# compiler
|
|
# ------------------------------------------------------------------------------
|
|
|
|
|
|
def ty_to_cpp(ty):
|
|
if ty[0] == '*':
|
|
return "CUdeviceptr"
|
|
return {
|
|
"i1": "int32_t",
|
|
"i8": "int8_t",
|
|
"i16": "int16_t",
|
|
"i32": "int32_t",
|
|
"i64": "int64_t",
|
|
"u32": "uint32_t",
|
|
"u64": "uint64_t",
|
|
"fp16": "float",
|
|
"bf16": "float",
|
|
"fp32": "float",
|
|
"f32": "float",
|
|
"fp64": "double",
|
|
}[ty]
|
|
|
|
|
|
def generate_name_initializer(signature):
|
|
src = "int i = 0;\n"
|
|
tys = signature.split(',')
|
|
for i, ty in enumerate(tys):
|
|
src
|
|
|
|
|
|
def binary_name_to_header_name(name):
|
|
if len(name) > 128:
|
|
# avoid filename too long errors (filename limit is 255)
|
|
name = "kernel_" + hashlib.sha256(name.encode("utf-8")).hexdigest()
|
|
return f"{name}.h"
|
|
|
|
|
|
def generate_launcher(constants, signature):
|
|
arg_decls = ', '.join(f"{ty_to_cpp(ty)} arg{i}" for i, ty in signature.items())
|
|
|
|
def _extracted_type(ty):
|
|
if ty[0] == '*':
|
|
return "PyObject*"
|
|
return {
|
|
'i1': 'int32_t',
|
|
'i32': 'int32_t',
|
|
'i64': 'int64_t',
|
|
'u32': 'uint32_t',
|
|
'u64': 'uint64_t',
|
|
'fp16': 'float',
|
|
'bf16': 'float',
|
|
'fp32': 'float',
|
|
'f32': 'float',
|
|
'fp64': 'double',
|
|
}[ty]
|
|
|
|
def format_of(ty):
|
|
return {
|
|
"PyObject*": "O",
|
|
"float": "f",
|
|
"double": "d",
|
|
"long": "l",
|
|
"uint32_t": "I",
|
|
"int32_t": "i",
|
|
"uint64_t": "K",
|
|
"int64_t": "L",
|
|
}[ty]
|
|
|
|
format = "iiiiiKKOOO" + ''.join([format_of(_extracted_type(ty)) for ty in signature.values()])
|
|
|
|
# generate glue code
|
|
src = f"""
|
|
#include \"cuda.h\"
|
|
#include <Python.h>
|
|
|
|
static inline void gpuAssert(CUresult code, const char *file, int line)
|
|
{{
|
|
if (code != CUDA_SUCCESS)
|
|
{{
|
|
const char* prefix = "Triton Error [CUDA]: ";
|
|
const char* str;
|
|
cuGetErrorString(code, &str);
|
|
char err[1024] = {{0}};
|
|
strcat(err, prefix);
|
|
strcat(err, str);
|
|
PyErr_SetString(PyExc_RuntimeError, err);
|
|
}}
|
|
}}
|
|
|
|
#define CUDA_CHECK(ans) {{ gpuAssert((ans), __FILE__, __LINE__); }}
|
|
|
|
void _launch(int gridX, int gridY, int gridZ, int num_warps, int shared_memory, CUstream stream, CUfunction function, {arg_decls}) {{
|
|
void *params[] = {{ {', '.join(f"&arg{i}" for i in signature.keys() if i not in constants)} }};
|
|
if(gridX*gridY*gridZ > 0){{
|
|
CUDA_CHECK(cuLaunchKernel(function, gridX, gridY, gridZ, 32*num_warps, 1, 1, shared_memory, stream, params, 0));
|
|
}}
|
|
}}
|
|
|
|
static inline CUdeviceptr getPointer(PyObject *obj, int idx) {{
|
|
if (PyLong_Check(obj)) {{
|
|
return (CUdeviceptr)PyLong_AsUnsignedLongLong(obj);
|
|
}}
|
|
if (obj == Py_None) {{
|
|
return (CUdeviceptr)0;
|
|
}}
|
|
PyObject *ptr = PyObject_GetAttrString(obj, "data_ptr");
|
|
if(ptr){{
|
|
PyObject *empty_tuple = PyTuple_New(0);
|
|
PyObject *ret = PyObject_Call(ptr, empty_tuple, NULL);
|
|
Py_DECREF(empty_tuple);
|
|
Py_DECREF(ptr);
|
|
if (!PyLong_Check(ret)) {{
|
|
PyErr_SetString(PyExc_TypeError, "data_ptr method of Pointer object must return 64-bit int");
|
|
}}
|
|
return (CUdeviceptr)PyLong_AsUnsignedLongLong(ret);
|
|
}}
|
|
PyErr_SetString(PyExc_TypeError, "Pointer argument must be either uint64 or have data_ptr method");
|
|
return (CUdeviceptr)0;
|
|
}}
|
|
|
|
static PyObject* launch(PyObject* self, PyObject* args) {{
|
|
int gridX, gridY, gridZ;
|
|
uint64_t _stream;
|
|
uint64_t _function;
|
|
int num_warps;
|
|
int shared_memory;
|
|
PyObject *launch_enter_hook = NULL;
|
|
PyObject *launch_exit_hook = NULL;
|
|
PyObject *compiled_kernel = NULL;
|
|
PyObject *hook_ret = NULL;
|
|
{' '.join([f"{_extracted_type(ty)} _arg{i}; " for i, ty in signature.items()])}
|
|
if(!PyArg_ParseTuple(args, \"{format}\", &gridX, &gridY, &gridZ, &num_warps, &shared_memory, &_stream, &_function, &launch_enter_hook, &launch_exit_hook, &compiled_kernel, {', '.join(f"&_arg{i}" for i, ty in signature.items())})) {{
|
|
return NULL;
|
|
}}
|
|
|
|
if (launch_enter_hook != Py_None) {{
|
|
PyObject *new_args = PyTuple_Pack(1, compiled_kernel);
|
|
hook_ret = PyObject_CallObject(launch_enter_hook, new_args);
|
|
Py_DECREF(new_args);
|
|
}}
|
|
|
|
_launch(gridX, gridY, gridZ, num_warps, shared_memory, (CUstream)_stream, (CUfunction)_function, {', '.join(f"getPointer(_arg{i},{i})" if ty[0]=="*" else f"_arg{i}"for i, ty in signature.items())});
|
|
|
|
if (launch_exit_hook != Py_None) {{
|
|
PyObject *new_args = NULL;
|
|
if (hook_ret) {{
|
|
new_args = PyTuple_Pack(2, compiled_kernel, hook_ret);
|
|
}} else {{
|
|
new_args = PyTuple_Pack(1, compiled_kernel);
|
|
}}
|
|
hook_ret = PyObject_CallObject(launch_exit_hook, new_args);
|
|
Py_DECREF(new_args);
|
|
}}
|
|
|
|
if (hook_ret) {{
|
|
Py_DECREF(hook_ret);
|
|
}}
|
|
if(PyErr_Occurred()) {{
|
|
return NULL;
|
|
}}
|
|
// return None
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}}
|
|
|
|
static PyMethodDef ModuleMethods[] = {{
|
|
{{"launch", launch, METH_VARARGS, "Entry point for all kernels with this signature"}},
|
|
{{NULL, NULL, 0, NULL}} // sentinel
|
|
}};
|
|
|
|
static struct PyModuleDef ModuleDef = {{
|
|
PyModuleDef_HEAD_INIT,
|
|
\"launcher\",
|
|
NULL, //documentation
|
|
-1, //size
|
|
ModuleMethods
|
|
}};
|
|
|
|
PyMODINIT_FUNC PyInit_launcher(void) {{
|
|
PyObject *m = PyModule_Create(&ModuleDef);
|
|
if(m == NULL) {{
|
|
return NULL;
|
|
}}
|
|
PyModule_AddFunctions(m, ModuleMethods);
|
|
return m;
|
|
}}
|
|
"""
|
|
|
|
return src
|
|
|
|
|
|
def default_cache_dir():
|
|
return os.path.join(os.environ["HOME"], ".triton", "cache")
|
|
|
|
|
|
def default_cuda_dir():
|
|
default_dir = "/usr/local/cuda"
|
|
return os.getenv("CUDA_HOME", default=default_dir)
|
|
|
|
|
|
class CacheManager:
|
|
|
|
def __init__(self, key):
|
|
self.key = key
|
|
self.lock_path = None
|
|
# create cache directory if it doesn't exist
|
|
self.cache_dir = os.environ.get('TRITON_CACHE_DIR', default_cache_dir())
|
|
if self.cache_dir:
|
|
self.cache_dir = os.path.join(self.cache_dir, self.key)
|
|
self.lock_path = os.path.join(self.cache_dir, "lock")
|
|
os.makedirs(self.cache_dir, exist_ok=True)
|
|
|
|
def _make_path(self, filename):
|
|
return os.path.join(self.cache_dir, filename)
|
|
|
|
def has_file(self, filename):
|
|
if not self.cache_dir:
|
|
return False
|
|
return os.path.exists(self._make_path(filename))
|
|
|
|
def put(self, data, filename, binary=True):
|
|
if not self.cache_dir:
|
|
return
|
|
binary = isinstance(data, bytes)
|
|
if not binary:
|
|
data = str(data)
|
|
assert self.lock_path is not None
|
|
filepath = self._make_path(filename)
|
|
with FileLock(self.lock_path):
|
|
# use tempfile to be robust against program interruptions
|
|
mode = "wb" if binary else "w"
|
|
with open(filepath + ".tmp", mode) as f:
|
|
f.write(data)
|
|
os.rename(filepath + ".tmp", filepath)
|
|
|
|
|
|
# Utilities for generating and compiling C wrappers
|
|
|
|
|
|
@functools.lru_cache()
|
|
def libcuda_dirs():
|
|
locs = subprocess.check_output(["whereis", "libcuda.so"]).decode().strip().split()[1:]
|
|
return [os.path.dirname(loc) for loc in locs]
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def quiet():
|
|
old_stdout, old_stderr = sys.stdout, sys.stderr
|
|
sys.stdout, sys.stderr = io.StringIO(), io.StringIO()
|
|
try:
|
|
yield
|
|
finally:
|
|
sys.stdout, sys.stderr = old_stdout, old_stderr
|
|
|
|
|
|
def _build(name, src, srcdir):
|
|
cuda_lib_dirs = libcuda_dirs()
|
|
cuda_path = os.environ.get('CUDA_PATH', default_cuda_dir())
|
|
cu_include_dir = os.path.join(cuda_path, "include")
|
|
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
|
so = os.path.join(srcdir, '{name}{suffix}'.format(name=name, suffix=suffix))
|
|
# try to avoid setuptools if possible
|
|
cc = os.environ.get("CC")
|
|
if cc is None:
|
|
# TODO: support more things here.
|
|
clang = shutil.which("clang")
|
|
gcc = shutil.which("gcc")
|
|
cc = gcc if gcc is not None else clang
|
|
py_include_dir = get_paths()["include"]
|
|
|
|
cc_cmd = [cc, src, "-O3", f"-I{cu_include_dir}", f"-I{py_include_dir}", f"-I{srcdir}", "-shared", "-fPIC", "-lcuda", "-o", so]
|
|
cc_cmd += [f"-L{dir}" for dir in cuda_lib_dirs]
|
|
ret = subprocess.check_call(cc_cmd)
|
|
|
|
if ret == 0:
|
|
return so
|
|
# fallback on setuptools
|
|
extra_compile_args = []
|
|
library_dirs = cuda_lib_dirs
|
|
include_dirs = [srcdir, cu_include_dir]
|
|
libraries = ['cuda']
|
|
# extra arguments
|
|
extra_link_args = []
|
|
# create extension module
|
|
ext = setuptools.Extension(
|
|
name=name,
|
|
language='c',
|
|
sources=[src],
|
|
include_dirs=include_dirs,
|
|
extra_compile_args=extra_compile_args + ['-O3'],
|
|
extra_link_args=extra_link_args,
|
|
library_dirs=library_dirs,
|
|
libraries=libraries,
|
|
)
|
|
# build extension module
|
|
args = ['build_ext']
|
|
args.append('--build-temp=' + srcdir)
|
|
args.append('--build-lib=' + srcdir)
|
|
args.append('-q')
|
|
args = dict(
|
|
name=name,
|
|
ext_modules=[ext],
|
|
script_args=args,
|
|
)
|
|
with quiet():
|
|
setuptools.setup(**args)
|
|
return so
|
|
|
|
|
|
def make_so_cache_key(version_hash, signature, constants):
|
|
# Get unique key for the compiled code
|
|
signature = {k: 'ptr' if v[0] == '*' else v for k, v in signature.items()}
|
|
key = f"{version_hash}-{''.join(signature.values())}{constants}"
|
|
key = hashlib.md5(key.encode("utf-8")).hexdigest()
|
|
return key
|
|
|
|
|
|
def make_fn_cache_key(fn_hash, signature, configs, constants, num_warps, num_stages):
|
|
# Get unique key for the compiled code
|
|
get_conf_key = lambda conf: (sorted(conf.divisible_by_16), sorted(conf.equal_to_1))
|
|
configs_key = [get_conf_key(conf) for conf in configs]
|
|
key = f"{fn_hash}-{''.join(signature.values())}-{configs_key}-{constants}-{num_warps}-{num_stages}"
|
|
key = hashlib.md5(key.encode("utf-8")).hexdigest()
|
|
return key
|
|
|
|
|
|
def read_or_execute(cache_manager, force_compile, file_name, metadata,
|
|
run_if_found: Callable[[str], bytes] = None,
|
|
run_if_not_found: Callable = None):
|
|
suffix = file_name.split(".")[1]
|
|
if not force_compile and cache_manager.has_file(file_name):
|
|
module = run_if_found(cache_manager._make_path(file_name))
|
|
data = module if isinstance(module, bytes) else str(module).encode("utf-8")
|
|
md5 = hashlib.md5(data).hexdigest()
|
|
has_changed = metadata and md5 != metadata["md5"][suffix]
|
|
return module, md5, has_changed, True
|
|
module = run_if_not_found()
|
|
data = module if isinstance(module, bytes) else str(module).encode("utf-8")
|
|
md5 = hashlib.md5(data).hexdigest()
|
|
cache_manager.put(data, file_name, True if isinstance(data, bytes) else data)
|
|
return module, md5, True, False
|
|
|
|
#
|
|
|
|
|
|
def make_stub(name, signature, constants):
|
|
# name of files that are cached
|
|
so_cache_key = make_so_cache_key(triton.runtime.jit.version_key(), signature, constants)
|
|
so_cache_manager = CacheManager(so_cache_key)
|
|
so_name = f"{name}.so"
|
|
# retrieve stub from cache if it exists
|
|
if not so_cache_manager.has_file(so_name):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
src = generate_launcher(constants, signature)
|
|
src_path = os.path.join(tmpdir, "main.c")
|
|
with open(src_path, "w") as f:
|
|
f.write(src)
|
|
so = _build(name, src_path, tmpdir)
|
|
with open(so, "rb") as f:
|
|
so_cache_manager.put(f.read(), so_name, binary=True)
|
|
return so_cache_manager._make_path(so_name)
|
|
|
|
|
|
def convert_type_repr(x):
|
|
match = re.search(r'!tt\.ptr<(.*)>', x)
|
|
if match is not None:
|
|
return '*' + convert_type_repr(match.group(1))
|
|
return x
|
|
|
|
|
|
def make_hash(fn, **kwargs):
|
|
if isinstance(fn, triton.runtime.JITFunction):
|
|
configs = kwargs["configs"]
|
|
signature = kwargs["signature"]
|
|
constants = kwargs.get("constants", dict())
|
|
num_warps = kwargs.get("num_warps", 4)
|
|
num_stages = kwargs.get("num_stages", 3)
|
|
# Get unique key for the compiled code
|
|
get_conf_key = lambda conf: (sorted(conf.divisible_by_16), sorted(conf.equal_to_1))
|
|
configs_key = [get_conf_key(conf) for conf in configs]
|
|
key = f"{fn.cache_key}-{''.join(signature.values())}-{configs_key}-{constants}-{num_warps}-{num_stages}"
|
|
return hashlib.md5(key.encode("utf-8")).hexdigest()
|
|
assert isinstance(fn, str)
|
|
return hashlib.md5((Path(fn).read_text() + triton.runtime.jit.version_key()).encode("utf-8")).hexdigest()
|
|
|
|
|
|
# - ^\s*func\s+ : match the start of the string, any leading whitespace, the keyword func,
|
|
# and any following whitespace
|
|
# - (public\s+)? : optionally match the keyword public and any following whitespace
|
|
# - (@\w+) : match an @ symbol followed by one or more word characters
|
|
# (letters, digits, or underscores), and capture it as group 1 (the function name)
|
|
# - (\((?:%\w+: \S+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\)) : match a pair of parentheses enclosing
|
|
# zero or more arguments separated by commas, and capture it as group 2 (the argument list)
|
|
mlir_prototype_pattern = r'^\s*func\s+(?:public\s+)?(@\w+)(\((?:%\w+: \S+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\))\s*\{\s*$'
|
|
ptx_prototype_pattern = r"\.(?:visible|extern)\s+\.(?:entry|func)\s+(\w+)\s*\(([^)]*)\)"
|
|
prototype_pattern = {
|
|
"ttir": mlir_prototype_pattern,
|
|
"ttgir": mlir_prototype_pattern,
|
|
"ptx": ptx_prototype_pattern,
|
|
}
|
|
|
|
mlir_arg_type_pattern = r'%\w+: ([^,^\)\s]+)(?: \{\S+ = \S+ : \S+\})?,?'
|
|
ptx_arg_type_pattern = r"\.param\s+\.(\w+)"
|
|
arg_type_pattern = {
|
|
"ttir": mlir_arg_type_pattern,
|
|
"ttgir": mlir_arg_type_pattern,
|
|
"ptx": ptx_arg_type_pattern,
|
|
}
|
|
|
|
|
|
# def compile(fn, signature: str, device: int = -1, constants=dict(), num_warps: int = 4, num_stages: int = 3, extern_libs=None, configs=None):
|
|
def compile(fn, **kwargs):
|
|
capability = kwargs.get("cc", None)
|
|
if capability is None:
|
|
device = torch.cuda.current_device()
|
|
capability = torch.cuda.get_device_capability(device)
|
|
capability = capability[0] * 10 + capability[1]
|
|
# we get the kernel, i.e. the first function generated in the module
|
|
# if fn is not a JITFunction, then it
|
|
# has to be a path to a file
|
|
context = _triton.ir.context()
|
|
asm = dict()
|
|
constants = kwargs.get("constants", dict())
|
|
num_warps = kwargs.get("num_warps", 4)
|
|
num_stages = kwargs.get("num_stages", 3 if capability >= 75 else 2)
|
|
extern_libs = kwargs.get("extern_libs", dict())
|
|
# build compilation stages
|
|
stages = {
|
|
"ast": (lambda path: fn, None),
|
|
"ttir": (lambda path: _triton.ir.parse_mlir_module(path, context),
|
|
lambda src: ast_to_ttir(src, signature, configs[0], constants)),
|
|
"ttgir": (lambda path: _triton.ir.parse_mlir_module(path, context),
|
|
lambda src: ttir_to_ttgir(src, num_warps, num_stages, capability)),
|
|
"llir": (lambda path: Path(path).read_bytes(),
|
|
lambda src: ttgir_to_llir(src, extern_libs, capability)),
|
|
"ptx": (lambda path: Path(path).read_text(),
|
|
lambda src: llir_to_ptx(src, capability)),
|
|
"cubin": (lambda path: Path(path).read_bytes(),
|
|
lambda src: ptx_to_cubin(src, capability))
|
|
}
|
|
# find out the signature of the function
|
|
if isinstance(fn, triton.runtime.JITFunction):
|
|
configs = kwargs.get("configs", None)
|
|
signature = kwargs["signature"]
|
|
if configs is None:
|
|
configs = [instance_descriptor()]
|
|
assert len(configs) == 1
|
|
kwargs["configs"] = configs
|
|
name = fn.__name__
|
|
first_stage = 0
|
|
if isinstance(signature, str):
|
|
signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
|
|
kwargs["signature"] = signature
|
|
else:
|
|
assert isinstance(fn, str)
|
|
_, ir = os.path.basename(fn).split(".")
|
|
src = Path(fn).read_text()
|
|
import re
|
|
match = re.search(prototype_pattern[ir], src, re.MULTILINE)
|
|
name, signature = match.group(1), match.group(2)
|
|
print(name, signature)
|
|
types = re.findall(arg_type_pattern[ir], signature)
|
|
print(types)
|
|
param_tys = [convert_type_repr(ty) for ty in types]
|
|
signature = {k: v for k, v in enumerate(param_tys)}
|
|
first_stage = list(stages.keys()).index(ir)
|
|
|
|
# cache manager
|
|
so_path = make_stub(name, signature, constants)
|
|
# create cache manager
|
|
fn_cache_manager = CacheManager(make_hash(fn, **kwargs))
|
|
# determine name and extension type of provided function
|
|
if isinstance(fn, triton.runtime.JITFunction):
|
|
name, ext = fn.__name__, "ast"
|
|
else:
|
|
name, ext = os.path.basename(fn).split(".")
|
|
|
|
# load metadata if any
|
|
metadata = None
|
|
if fn_cache_manager.has_file(f'{name}.json'):
|
|
with open(fn_cache_manager._make_path(f"{name}.json")) as f:
|
|
metadata = json.load(f)
|
|
else:
|
|
metadata = {"num_warps": num_warps, "num_stages": num_stages, "ctime": dict()}
|
|
if ext == "ptx":
|
|
assert "shared" in kwargs, "ptx compilation must provide shared memory size"
|
|
metadata["shared"] = kwargs["shared"]
|
|
|
|
first_stage = list(stages.keys()).index(ext)
|
|
asm = dict()
|
|
module = fn
|
|
# run compilation pipeline and populate metadata
|
|
for ir, (parse, compile) in list(stages.items())[first_stage:]:
|
|
path = fn_cache_manager._make_path(f"{name}.{ir}")
|
|
if ir == ext:
|
|
next_module = parse(fn)
|
|
elif os.path.exists(path) and\
|
|
ir in metadata["ctime"] and\
|
|
os.path.getctime(path) == metadata["ctime"][ir]:
|
|
next_module = parse(path)
|
|
else:
|
|
next_module = compile(module)
|
|
fn_cache_manager.put(next_module, f"{name}.{ir}")
|
|
if os.path.exists(path):
|
|
metadata["ctime"][ir] = os.path.getctime(path)
|
|
asm[ir] = next_module if ir == "cubin" else str(next_module)
|
|
if ir == "llir" and "shared" not in metadata:
|
|
metadata["shared"] = _triton.get_shared_memory_size(module)
|
|
if ir == "ptx":
|
|
metadata["name"] = ptx_get_kernel_name(next_module)
|
|
module = next_module
|
|
# write-back metadata
|
|
fn_cache_manager.put(json.dumps(metadata), f"{name}.json", binary=False)
|
|
# return handle to compiled kernel
|
|
return CompiledKernel(so_path, metadata, asm)
|
|
|
|
|
|
class CompiledKernel:
|
|
|
|
# Hooks for external tools to monitor the execution of triton kernels
|
|
launch_enter_hook = None
|
|
launch_exit_hook = None
|
|
|
|
def __init__(self, so_path, metadata, asm):
|
|
# initialize launcher
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location("launcher", so_path)
|
|
mod = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(mod)
|
|
self.c_wrapper = getattr(mod, "launch")
|
|
# initialize metadata
|
|
self.shared = metadata["shared"]
|
|
self.num_warps = metadata["num_warps"]
|
|
self.num_stages = metadata["num_stages"]
|
|
# initialize asm dict
|
|
self.asm = asm
|
|
# binaries are lazily initialized
|
|
# because it involves doing runtime things
|
|
# (e.g., checking amount of shared memory on current device)
|
|
self.metadata = metadata
|
|
self.cu_module = None
|
|
self.cu_function = None
|
|
|
|
def _init_handles(self):
|
|
if self.cu_module is not None:
|
|
return
|
|
device = torch.cuda.current_device()
|
|
global cuda_utils
|
|
init_cuda_utils()
|
|
max_shared = cuda_utils.get_device_properties(device)["max_shared_mem"]
|
|
if self.shared > max_shared:
|
|
raise OutOfResources(self.shared, max_shared, "shared memory")
|
|
mod, func, n_regs, n_spills = cuda_utils.load_binary(self.metadata["name"], self.asm["cubin"], self.shared, device)
|
|
self.cu_module = mod
|
|
self.cu_function = func
|
|
|
|
def __getattribute__(self, name):
|
|
if name == 'c_wrapper':
|
|
self._init_handles()
|
|
return super().__getattribute__(name)
|
|
|
|
def __getitem__(self, grid):
|
|
self._init_handles()
|
|
|
|
def runner(*args, stream=None):
|
|
if stream is None:
|
|
stream = torch.cuda.current_stream().cuda_stream
|
|
self.c_wrapper(grid[0], grid[1], grid[2], self.num_warps, self.shared, stream, self.cu_function,
|
|
CompiledKernel.launch_enter_hook, CompiledKernel.launch_exit_hook, self, *args)
|
|
return runner
|
|
|
|
def get_sass(self, fun=None):
|
|
if 'sass' in self.asm:
|
|
return self.asm['sass']
|
|
fd, path = tempfile.mkstemp()
|
|
try:
|
|
with open(fd, 'wb') as cubin:
|
|
cubin.write(self.asm['cubin'])
|
|
self.sass = extract(path, fun)
|
|
finally:
|
|
os.remove(path)
|
|
self.asm['sass'] = self.sass
|
|
return self.sass
|
|
|
|
|
|
class CudaUtils(object):
|
|
|
|
def __new__(cls):
|
|
if not hasattr(cls, 'instance'):
|
|
cls.instance = super(CudaUtils, cls).__new__(cls)
|
|
return cls.instance
|
|
|
|
def _generate_src(self):
|
|
return """
|
|
#include <cuda.h>
|
|
|
|
#include \"cuda.h\"
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include <Python.h>
|
|
|
|
static inline void gpuAssert(CUresult code, const char *file, int line)
|
|
{
|
|
if (code != CUDA_SUCCESS)
|
|
{
|
|
const char* prefix = "Triton Error [CUDA]: ";
|
|
const char* str;
|
|
cuGetErrorString(code, &str);
|
|
char err[1024] = {0};
|
|
strcat(err, prefix);
|
|
strcat(err, str);
|
|
PyErr_SetString(PyExc_RuntimeError, err);
|
|
}
|
|
}
|
|
|
|
#define CUDA_CHECK(ans) { gpuAssert((ans), __FILE__, __LINE__); if(PyErr_Occurred()) return NULL; }
|
|
|
|
static PyObject* getDeviceProperties(PyObject* self, PyObject* args){
|
|
int device_id;
|
|
if(!PyArg_ParseTuple(args, "i", &device_id))
|
|
return NULL;
|
|
// Get device handle
|
|
CUdevice device;
|
|
cuDeviceGet(&device, device_id);
|
|
|
|
// create a struct to hold device properties
|
|
int max_shared_mem;
|
|
int multiprocessor_count;
|
|
int sm_clock_rate;
|
|
int mem_clock_rate;
|
|
int mem_bus_width;
|
|
CUDA_CHECK(cuDeviceGetAttribute(&max_shared_mem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, device));
|
|
CUDA_CHECK(cuDeviceGetAttribute(&multiprocessor_count, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device));
|
|
CUDA_CHECK(cuDeviceGetAttribute(&sm_clock_rate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, device));
|
|
CUDA_CHECK(cuDeviceGetAttribute(&mem_clock_rate, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, device));
|
|
CUDA_CHECK(cuDeviceGetAttribute(&mem_bus_width, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, device));
|
|
|
|
|
|
return Py_BuildValue("{s:i, s:i, s:i, s:i, s:i}", "max_shared_mem", max_shared_mem,
|
|
"multiprocessor_count", multiprocessor_count,
|
|
"sm_clock_rate", sm_clock_rate,
|
|
"mem_clock_rate", mem_clock_rate,
|
|
"mem_bus_width", mem_bus_width);
|
|
}
|
|
|
|
static PyObject* loadBinary(PyObject* self, PyObject* args) {
|
|
const char* name;
|
|
const char* data;
|
|
Py_ssize_t data_size;
|
|
int shared;
|
|
int device;
|
|
if(!PyArg_ParseTuple(args, "ss#ii", &name, &data, &data_size, &shared, &device)) {
|
|
return NULL;
|
|
}
|
|
CUfunction fun;
|
|
CUmodule mod;
|
|
int32_t n_regs = 0;
|
|
int32_t n_spills = 0;
|
|
// create driver handles
|
|
CUDA_CHECK(cuModuleLoadData(&mod, data));
|
|
CUDA_CHECK(cuModuleGetFunction(&fun, mod, name));
|
|
// get allocated registers and spilled registers from the function
|
|
CUDA_CHECK(cuFuncGetAttribute(&n_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, fun));
|
|
CUDA_CHECK(cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun));
|
|
n_spills /= 4;
|
|
// set dynamic shared memory if necessary
|
|
int shared_optin;
|
|
CUDA_CHECK(cuDeviceGetAttribute(&shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, device));
|
|
if (shared > 49152 && shared_optin > 49152) {
|
|
CUDA_CHECK(cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED));
|
|
int shared_total, shared_static;
|
|
CUDA_CHECK(cuDeviceGetAttribute(&shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR, device));
|
|
CUDA_CHECK(cuFuncGetAttribute(&shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun));
|
|
CUDA_CHECK(cuFuncSetAttribute(fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared_optin - shared_static));
|
|
}
|
|
|
|
if(PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
return Py_BuildValue("(KKii)", (uint64_t)mod, (uint64_t)fun, n_regs, n_spills);
|
|
}
|
|
|
|
static PyMethodDef ModuleMethods[] = {
|
|
{"load_binary", loadBinary, METH_VARARGS, "Load provided cubin into CUDA driver"},
|
|
{"get_device_properties", getDeviceProperties, METH_VARARGS, "Get the properties for a given device"},
|
|
{NULL, NULL, 0, NULL} // sentinel
|
|
};
|
|
|
|
static struct PyModuleDef ModuleDef = {
|
|
PyModuleDef_HEAD_INIT,
|
|
\"cuda_utils\",
|
|
NULL, //documentation
|
|
-1, //size
|
|
ModuleMethods
|
|
};
|
|
|
|
PyMODINIT_FUNC PyInit_cuda_utils(void) {
|
|
PyObject *m = PyModule_Create(&ModuleDef);
|
|
if(m == NULL) {
|
|
return NULL;
|
|
}
|
|
PyModule_AddFunctions(m, ModuleMethods);
|
|
return m;
|
|
}
|
|
"""
|
|
|
|
def __init__(self):
|
|
src = self._generate_src()
|
|
key = hashlib.md5(src.encode("utf-8")).hexdigest()
|
|
cache = CacheManager(key)
|
|
fname = "cuda_utils.so"
|
|
if not cache.has_file(fname):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
src_path = os.path.join(tmpdir, "main.c")
|
|
with open(src_path, "w") as f:
|
|
f.write(src)
|
|
so = _build("cuda_utils", src_path, tmpdir)
|
|
with open(so, "rb") as f:
|
|
cache.put(f.read(), fname, binary=True)
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location("cuda_utils", cache._make_path(fname))
|
|
mod = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(mod)
|
|
self.load_binary = mod.load_binary
|
|
self.get_device_properties = mod.get_device_properties
|
|
|
|
|
|
def init_cuda_utils():
|
|
global cuda_utils
|
|
if cuda_utils is None:
|
|
cuda_utils = CudaUtils()
|
|
|
|
|
|
cuda_utils = None
|