mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
866 lines
34 KiB
C++
866 lines
34 KiB
C++
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
|
|
#include "ConvertLayoutOpToLLVM.h"
|
|
#include "LoadStoreOpToLLVM.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::triton;
|
|
|
|
using ::mlir::LLVM::getSharedMemoryObjectFromStruct;
|
|
using ::mlir::triton::gpu::getElemsPerThread;
|
|
using ::mlir::triton::gpu::SharedEncodingAttr;
|
|
|
|
// Contains some helper functions for both Load and Store conversions.
|
|
struct LoadStoreConversionBase {
|
|
explicit LoadStoreConversionBase(AxisInfoAnalysis &axisAnalysisPass)
|
|
: axisAnalysisPass(axisAnalysisPass) {}
|
|
|
|
unsigned getContiguity(Value ptr) const {
|
|
auto tensorTy = ptr.getType().dyn_cast<RankedTensorType>();
|
|
if (!tensorTy)
|
|
return 1;
|
|
return axisAnalysisPass.getPtrContiguity(ptr);
|
|
}
|
|
|
|
unsigned getVectorSize(Value ptr) const {
|
|
auto tensorTy = ptr.getType().dyn_cast<RankedTensorType>();
|
|
if (!tensorTy)
|
|
return 1;
|
|
auto contiguity = getContiguity(ptr);
|
|
auto pointeeBitWidth = triton::getPointeeBitWidth(tensorTy);
|
|
// The maximum vector size is 128 bits on NVIDIA GPUs.
|
|
return std::min<unsigned>(128 / pointeeBitWidth, contiguity);
|
|
}
|
|
|
|
unsigned getMaskAlignment(Value mask) const {
|
|
return axisAnalysisPass.getMaskAlignment(mask);
|
|
}
|
|
|
|
protected:
|
|
AxisInfoAnalysis &axisAnalysisPass;
|
|
};
|
|
|
|
struct LoadOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::LoadOp>,
|
|
public LoadStoreConversionBase {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::LoadOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
LoadOpConversion(TritonGPUToLLVMTypeConverter &converter,
|
|
AxisInfoAnalysis &axisAnalysisPass, PatternBenefit benefit)
|
|
: ConvertTritonGPUOpToLLVMPattern<triton::LoadOp>(converter, benefit),
|
|
LoadStoreConversionBase(axisAnalysisPass) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::LoadOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
|
|
// original values
|
|
Value ptr = op.getPtr();
|
|
Value mask = op.getMask();
|
|
Value other = op.getOther();
|
|
|
|
// adaptor values
|
|
Value llPtr = adaptor.getPtr();
|
|
Value llMask = adaptor.getMask();
|
|
Value llOther = adaptor.getOther();
|
|
|
|
// Determine the vectorization size
|
|
Type valueTy = op.getResult().getType();
|
|
Type valueElemTy =
|
|
typeConverter->convertType(getElementTypeOrSelf(valueTy));
|
|
unsigned vec = getVectorSize(ptr);
|
|
unsigned numElems = getElemsPerThread(ptr.getType());
|
|
if (llMask)
|
|
vec = std::min<size_t>(vec, getMaskAlignment(mask));
|
|
|
|
// Get the LLVM values for pointers
|
|
auto ptrElems = getTypeConverter()->unpackLLElements(loc, llPtr, rewriter,
|
|
ptr.getType());
|
|
assert(ptrElems.size() == numElems);
|
|
|
|
// Get the LLVM values for mask
|
|
SmallVector<Value> maskElems;
|
|
if (llMask) {
|
|
maskElems = getTypeConverter()->unpackLLElements(loc, llMask, rewriter,
|
|
mask.getType());
|
|
assert(maskElems.size() == numElems);
|
|
}
|
|
|
|
// Get the LLVM values for `other`
|
|
// TODO: (goostavz) handle when other is const but not splat, which
|
|
// should be rarely seen
|
|
bool otherIsSplatConstInt = false;
|
|
DenseElementsAttr constAttr;
|
|
int64_t splatVal = 0;
|
|
if (other && valueElemTy.isa<IntegerType>() &&
|
|
matchPattern(other, m_Constant(&constAttr)) && constAttr.isSplat() &&
|
|
constAttr.getElementType().isa<IntegerType>()) {
|
|
otherIsSplatConstInt = true;
|
|
splatVal = constAttr.getSplatValue<APInt>().getSExtValue();
|
|
}
|
|
SmallVector<Value> otherElems;
|
|
if (other) {
|
|
otherElems = getTypeConverter()->unpackLLElements(loc, llOther, rewriter,
|
|
other.getType());
|
|
}
|
|
|
|
// vectorized iteration through all the pointer/mask/other elements
|
|
const int valueElemNBits =
|
|
std::max(8u, valueElemTy.getIntOrFloatBitWidth());
|
|
const int numVecs = numElems / vec;
|
|
|
|
SmallVector<Value> loadedVals;
|
|
for (size_t vecStart = 0; vecStart < numElems; vecStart += vec) {
|
|
// TODO: optimization when ptr is GEP with constant offset
|
|
size_t in_off = 0;
|
|
|
|
const size_t maxWordWidth = std::max<size_t>(32, valueElemNBits);
|
|
const size_t totalWidth = valueElemNBits * vec;
|
|
const size_t width = std::min(totalWidth, maxWordWidth);
|
|
const size_t nWords = std::max<size_t>(1, totalWidth / width);
|
|
const size_t wordNElems = width / valueElemNBits;
|
|
const size_t movWidth = width < 16 ? 16 : width;
|
|
assert(wordNElems * nWords * numVecs == numElems);
|
|
|
|
// TODO(Superjomn) Add cache policy fields to StoreOp.
|
|
// TODO(Superjomn) Deal with cache policy here.
|
|
const bool hasL2EvictPolicy = false;
|
|
|
|
PTXBuilder ptxBuilder;
|
|
|
|
Value pred = mask ? maskElems[vecStart] : int_val(1, 1);
|
|
|
|
const std::string readConstraint =
|
|
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
|
|
const std::string writeConstraint =
|
|
(width == 64) ? "=l" : ((width == 32) ? "=r" : "=c");
|
|
|
|
// prepare asm operands
|
|
auto *dstsOpr = ptxBuilder.newListOperand();
|
|
for (size_t wordIdx = 0; wordIdx < nWords; ++wordIdx) {
|
|
auto *opr = ptxBuilder.newOperand(writeConstraint,
|
|
/*init=*/true); // =r operations
|
|
dstsOpr->listAppend(opr);
|
|
}
|
|
|
|
auto *addrOpr =
|
|
ptxBuilder.newAddrOperand(ptrElems[vecStart], "l", in_off);
|
|
|
|
// Define the instruction opcode
|
|
auto &ld = ptxBuilder.create<>("ld")
|
|
->o("volatile", op.getIsVolatile())
|
|
.global()
|
|
.o("ca", op.getCache() == triton::CacheModifier::CA)
|
|
.o("cg", op.getCache() == triton::CacheModifier::CG)
|
|
.o("L1::evict_first",
|
|
op.getEvict() == triton::EvictionPolicy::EVICT_FIRST)
|
|
.o("L1::evict_last",
|
|
op.getEvict() == triton::EvictionPolicy::EVICT_LAST)
|
|
.o("L1::cache_hint", hasL2EvictPolicy)
|
|
.v(nWords)
|
|
.b(width);
|
|
|
|
PTXBuilder::Operand *evictOpr{};
|
|
|
|
// Here lack a mlir::Value to bind to this operation, so disabled.
|
|
// if (has_l2_evict_policy)
|
|
// evictOpr = ptxBuilder.newOperand(l2Evict, "l");
|
|
|
|
if (!evictOpr)
|
|
ld(dstsOpr, addrOpr).predicate(pred, "b");
|
|
else
|
|
ld(dstsOpr, addrOpr, evictOpr).predicate(pred, "b");
|
|
|
|
if (other) {
|
|
for (size_t ii = 0; ii < nWords; ++ii) {
|
|
// PTX doesn't support mov.u8, so we need to use mov.u16
|
|
PTXInstr &mov =
|
|
ptxBuilder.create<>("mov")->o("u" + std::to_string(movWidth));
|
|
|
|
size_t size = width / valueElemNBits;
|
|
|
|
auto vecTy = LLVM::getFixedVectorType(valueElemTy, size);
|
|
Value v = undef(vecTy);
|
|
for (size_t s = 0; s < size; ++s) {
|
|
Value falseVal = otherElems[vecStart + ii * size + s];
|
|
Value sVal = createIndexAttrConstant(
|
|
rewriter, loc, this->getTypeConverter()->getIndexType(), s);
|
|
v = insert_element(vecTy, v, falseVal, sVal);
|
|
}
|
|
v = bitcast(v, IntegerType::get(getContext(), width));
|
|
|
|
PTXInstr::Operand *opr{};
|
|
|
|
if (otherIsSplatConstInt) {
|
|
for (size_t s = 0; s < 32; s += valueElemNBits)
|
|
splatVal |= splatVal << valueElemNBits;
|
|
opr = ptxBuilder.newConstantOperand(splatVal);
|
|
} else
|
|
opr = ptxBuilder.newOperand(v, readConstraint);
|
|
|
|
mov(dstsOpr->listGet(ii), opr).predicateNot(pred, "b");
|
|
}
|
|
}
|
|
|
|
// Create inline ASM signature
|
|
SmallVector<Type> retTys(nWords, IntegerType::get(getContext(), width));
|
|
Type retTy = retTys.size() > 1
|
|
? LLVM::LLVMStructType::getLiteral(getContext(), retTys)
|
|
: retTys[0];
|
|
|
|
// TODO: if (has_l2_evict_policy)
|
|
// auto asmDialectAttr =
|
|
// LLVM::AsmDialectAttr::get(rewriter.getContext(),
|
|
// LLVM::AsmDialect::AD_ATT);
|
|
Value ret = ptxBuilder.launch(rewriter, loc, retTy);
|
|
|
|
// Extract and store return values
|
|
SmallVector<Value> rets;
|
|
for (unsigned int ii = 0; ii < nWords; ++ii) {
|
|
Value curr;
|
|
if (retTy.isa<LLVM::LLVMStructType>()) {
|
|
curr = extract_val(IntegerType::get(getContext(), width), ret, ii);
|
|
} else {
|
|
curr = ret;
|
|
}
|
|
curr = bitcast(curr, LLVM::getFixedVectorType(valueElemTy,
|
|
width / valueElemNBits));
|
|
rets.push_back(curr);
|
|
}
|
|
int tmp = width / valueElemNBits;
|
|
for (size_t ii = 0; ii < vec; ++ii) {
|
|
Value vecIdx = createIndexAttrConstant(
|
|
rewriter, loc, this->getTypeConverter()->getIndexType(), ii % tmp);
|
|
Value loaded = extract_element(valueElemTy, rets[ii / tmp], vecIdx);
|
|
loadedVals.push_back(loaded);
|
|
}
|
|
} // end vec
|
|
|
|
Type llvmResultStructTy = getTypeConverter()->convertType(valueTy);
|
|
Value resultStruct = getTypeConverter()->packLLElements(
|
|
loc, loadedVals, rewriter, llvmResultStructTy);
|
|
rewriter.replaceOp(op, {resultStruct});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct StoreOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::StoreOp>,
|
|
public LoadStoreConversionBase {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::StoreOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
StoreOpConversion(TritonGPUToLLVMTypeConverter &converter,
|
|
AxisInfoAnalysis &axisAnalysisPass, PatternBenefit benefit)
|
|
: ConvertTritonGPUOpToLLVMPattern<triton::StoreOp>(converter, benefit),
|
|
LoadStoreConversionBase(axisAnalysisPass) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::StoreOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value ptr = op.getPtr();
|
|
Value value = op.getValue();
|
|
|
|
Value llPtr = adaptor.getPtr();
|
|
Value llMask = adaptor.getMask();
|
|
Value llValue = adaptor.getValue();
|
|
|
|
auto loc = op->getLoc();
|
|
MLIRContext *ctx = rewriter.getContext();
|
|
|
|
auto valueTy = value.getType();
|
|
Type valueElemTy =
|
|
typeConverter->convertType(getElementTypeOrSelf(valueTy));
|
|
|
|
unsigned vec = getVectorSize(ptr);
|
|
unsigned elemsPerThread = getElemsPerThread(ptr.getType());
|
|
|
|
auto ptrElems = getTypeConverter()->unpackLLElements(loc, llPtr, rewriter,
|
|
ptr.getType());
|
|
auto valueElems = getTypeConverter()->unpackLLElements(
|
|
loc, llValue, rewriter, value.getType());
|
|
assert(ptrElems.size() == valueElems.size());
|
|
|
|
// Determine the vectorization size
|
|
SmallVector<Value> maskElems;
|
|
if (llMask) {
|
|
Value mask = op.getMask();
|
|
maskElems = getTypeConverter()->unpackLLElements(loc, llMask, rewriter,
|
|
mask.getType());
|
|
assert(valueElems.size() == maskElems.size());
|
|
|
|
unsigned maskAlign = getMaskAlignment(mask);
|
|
vec = std::min(vec, maskAlign);
|
|
}
|
|
|
|
// numElements = 1 for scalar
|
|
auto tensorTy = valueTy.dyn_cast<RankedTensorType>();
|
|
auto numElems = tensorTy ? tensorTy.getNumElements() : 1;
|
|
Value mask = int_val(1, 1);
|
|
auto tid = tid_val();
|
|
mask = and_(mask,
|
|
icmp_slt(mul(tid, i32_val(elemsPerThread)), i32_val(numElems)));
|
|
|
|
const size_t dtsize =
|
|
std::max<int>(1, valueElemTy.getIntOrFloatBitWidth() / 8);
|
|
const size_t valueElemNBits = dtsize * 8;
|
|
|
|
const int numVecs = elemsPerThread / vec;
|
|
for (size_t vecStart = 0; vecStart < elemsPerThread; vecStart += vec) {
|
|
// TODO: optimization when ptr is AddPtr with constant offset
|
|
size_t in_off = 0;
|
|
|
|
const size_t maxWordWidth = std::max<size_t>(32, valueElemNBits);
|
|
const size_t totalWidth = valueElemNBits * vec;
|
|
const size_t width = std::min(totalWidth, maxWordWidth);
|
|
const size_t nWords = std::max<size_t>(1, totalWidth / width);
|
|
const size_t wordNElems = width / valueElemNBits;
|
|
assert(wordNElems * nWords * numVecs == elemsPerThread);
|
|
|
|
// TODO(Superjomn) Add cache policy fields to StoreOp.
|
|
// TODO(Superjomn) Deal with cache policy here.
|
|
|
|
Type valArgTy = IntegerType::get(ctx, width);
|
|
auto wordTy = vec_ty(valueElemTy, wordNElems);
|
|
|
|
SmallVector<std::pair<Value, std::string>> asmArgs;
|
|
for (size_t wordIdx = 0; wordIdx < nWords; ++wordIdx) {
|
|
// llWord is a width-len composition
|
|
Value llWord = undef(wordTy);
|
|
// Insert each value element to the composition
|
|
for (size_t elemIdx = 0; elemIdx < wordNElems; ++elemIdx) {
|
|
const size_t elemOffset = vecStart + wordIdx * wordNElems + elemIdx;
|
|
assert(elemOffset < valueElems.size());
|
|
Value elem = valueElems[elemOffset];
|
|
if (elem.getType().isInteger(1))
|
|
elem = sext(i8_ty, elem);
|
|
elem = bitcast(elem, valueElemTy);
|
|
|
|
llWord = insert_element(wordTy, llWord, elem, i32_val(elemIdx));
|
|
}
|
|
llWord = bitcast(llWord, valArgTy);
|
|
std::string constraint =
|
|
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
|
|
asmArgs.emplace_back(llWord, constraint);
|
|
}
|
|
|
|
// Prepare the PTX inline asm.
|
|
PTXBuilder ptxBuilder;
|
|
auto *asmArgList = ptxBuilder.newListOperand(asmArgs);
|
|
|
|
Value maskVal = llMask ? and_(mask, maskElems[vecStart]) : mask;
|
|
|
|
auto *asmAddr =
|
|
ptxBuilder.newAddrOperand(ptrElems[vecStart], "l", in_off);
|
|
|
|
auto &ptxStoreInstr =
|
|
ptxBuilder.create<>("st")->global().v(nWords).b(width);
|
|
ptxStoreInstr(asmAddr, asmArgList).predicate(maskVal, "b");
|
|
|
|
Type boolTy = getTypeConverter()->convertType(rewriter.getIntegerType(1));
|
|
llvm::SmallVector<Type> argTys({boolTy, ptr.getType()});
|
|
argTys.insert(argTys.end(), nWords, valArgTy);
|
|
|
|
auto asmReturnTy = void_ty(ctx);
|
|
|
|
ptxBuilder.launch(rewriter, loc, asmReturnTy);
|
|
}
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct AtomicCASOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::AtomicCASOp>,
|
|
public LoadStoreConversionBase {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::AtomicCASOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
AtomicCASOpConversion(TritonGPUToLLVMTypeConverter &converter,
|
|
const Allocation *allocation, Value smem,
|
|
AxisInfoAnalysis &axisAnalysisPass,
|
|
PatternBenefit benefit)
|
|
: ConvertTritonGPUOpToLLVMPattern<triton::AtomicCASOp>(
|
|
converter, allocation, smem, benefit),
|
|
LoadStoreConversionBase(axisAnalysisPass) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::AtomicCASOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
MLIRContext *ctx = rewriter.getContext();
|
|
|
|
Value llPtr = adaptor.getPtr();
|
|
Value llCmp = adaptor.getCmp();
|
|
Value llVal = adaptor.getVal();
|
|
|
|
auto ptrElements = getTypeConverter()->unpackLLElements(
|
|
loc, llPtr, rewriter, op.getPtr().getType());
|
|
auto cmpElements = getTypeConverter()->unpackLLElements(
|
|
loc, llCmp, rewriter, op.getCmp().getType());
|
|
auto valElements = getTypeConverter()->unpackLLElements(
|
|
loc, llVal, rewriter, op.getVal().getType());
|
|
|
|
auto TensorTy = op.getResult().getType().dyn_cast<RankedTensorType>();
|
|
Type valueElemTy =
|
|
TensorTy ? getTypeConverter()->convertType(TensorTy.getElementType())
|
|
: op.getResult().getType();
|
|
auto valueElemNBits = valueElemTy.getIntOrFloatBitWidth();
|
|
auto tid = tid_val();
|
|
Value pred = icmp_eq(tid, i32_val(0));
|
|
PTXBuilder ptxBuilderMemfence;
|
|
auto memfence = ptxBuilderMemfence.create<PTXInstr>("membar")->o("gl");
|
|
memfence();
|
|
auto ASMReturnTy = void_ty(ctx);
|
|
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
|
|
|
|
Value atomPtr = getSharedMemoryBase(loc, rewriter, op.getOperation());
|
|
atomPtr = bitcast(atomPtr, ptr_ty(valueElemTy, 3));
|
|
Value casPtr = ptrElements[0];
|
|
Value casCmp = cmpElements[0];
|
|
Value casVal = valElements[0];
|
|
|
|
PTXBuilder ptxBuilderAtomicCAS;
|
|
auto *dstOpr = ptxBuilderAtomicCAS.newOperand("=r", /*init=*/true);
|
|
auto *ptrOpr = ptxBuilderAtomicCAS.newAddrOperand(casPtr, "l");
|
|
auto *cmpOpr = ptxBuilderAtomicCAS.newOperand(casCmp, "r");
|
|
auto *valOpr = ptxBuilderAtomicCAS.newOperand(casVal, "r");
|
|
auto &atom = *ptxBuilderAtomicCAS.create<PTXInstr>("atom");
|
|
atom.global().o("cas").o("b32");
|
|
atom(dstOpr, ptrOpr, cmpOpr, valOpr).predicate(pred);
|
|
auto old = ptxBuilderAtomicCAS.launch(rewriter, loc, valueElemTy);
|
|
barrier();
|
|
|
|
PTXBuilder ptxBuilderStore;
|
|
auto *dstOprStore = ptxBuilderStore.newAddrOperand(atomPtr, "r");
|
|
auto *valOprStore = ptxBuilderStore.newOperand(old, "r");
|
|
auto &st = *ptxBuilderStore.create<PTXInstr>("st");
|
|
st.shared().o("b32");
|
|
st(dstOprStore, valOprStore).predicate(pred);
|
|
ptxBuilderStore.launch(rewriter, loc, ASMReturnTy);
|
|
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
|
|
barrier();
|
|
Value ret = load(atomPtr);
|
|
barrier();
|
|
rewriter.replaceOp(op, {ret});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct AtomicRMWOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::AtomicRMWOp>,
|
|
public LoadStoreConversionBase {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::AtomicRMWOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
AtomicRMWOpConversion(TritonGPUToLLVMTypeConverter &converter,
|
|
const Allocation *allocation, Value smem,
|
|
AxisInfoAnalysis &axisAnalysisPass,
|
|
PatternBenefit benefit)
|
|
: ConvertTritonGPUOpToLLVMPattern<triton::AtomicRMWOp>(
|
|
converter, allocation, smem, benefit),
|
|
LoadStoreConversionBase(axisAnalysisPass) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::AtomicRMWOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op.getLoc();
|
|
MLIRContext *ctx = rewriter.getContext();
|
|
|
|
auto atomicRmwAttr = op.getAtomicRmwOp();
|
|
|
|
Value val = op.getVal();
|
|
Value ptr = op.getPtr();
|
|
|
|
Value llPtr = adaptor.getPtr();
|
|
Value llVal = adaptor.getVal();
|
|
Value llMask = adaptor.getMask();
|
|
|
|
auto valElements = getTypeConverter()->unpackLLElements(
|
|
loc, llVal, rewriter, val.getType());
|
|
auto ptrElements = getTypeConverter()->unpackLLElements(
|
|
loc, llPtr, rewriter, ptr.getType());
|
|
SmallVector<Value> maskElements;
|
|
if (llMask)
|
|
maskElements = getTypeConverter()->unpackLLElements(
|
|
loc, llMask, rewriter, op.getMask().getType());
|
|
|
|
auto tensorTy = op.getResult().getType().dyn_cast<RankedTensorType>();
|
|
Type valueElemTy =
|
|
tensorTy ? getTypeConverter()->convertType(tensorTy.getElementType())
|
|
: op.getResult().getType();
|
|
const size_t valueElemNBits = valueElemTy.getIntOrFloatBitWidth();
|
|
auto elemsPerThread = getElemsPerThread(val.getType());
|
|
// vec = 1, numElements = 1 for scalar
|
|
auto vec = getVectorSize(ptr);
|
|
int numElems = 1;
|
|
// tensor
|
|
if (tensorTy) {
|
|
auto valTy = val.getType().cast<RankedTensorType>();
|
|
vec = std::min<unsigned>(vec, valTy.getElementType().isF16() ? 2 : 1);
|
|
// mask
|
|
numElems = tensorTy.getNumElements();
|
|
}
|
|
Value mask = int_val(1, 1);
|
|
auto tid = tid_val();
|
|
mask = and_(mask,
|
|
icmp_slt(mul(tid, i32_val(elemsPerThread)), i32_val(numElems)));
|
|
|
|
auto vecTy = vec_ty(valueElemTy, vec);
|
|
SmallVector<Value> resultVals(elemsPerThread);
|
|
for (size_t i = 0; i < elemsPerThread; i += vec) {
|
|
Value rmwVal = undef(vecTy);
|
|
for (int ii = 0; ii < vec; ++ii) {
|
|
Value iiVal = createIndexAttrConstant(
|
|
rewriter, loc, getTypeConverter()->getIndexType(), ii);
|
|
rmwVal = insert_element(vecTy, rmwVal, valElements[i + ii], iiVal);
|
|
}
|
|
|
|
Value rmwPtr = ptrElements[i];
|
|
Value rmwMask = llMask ? and_(mask, maskElements[i]) : mask;
|
|
std::string sTy;
|
|
PTXBuilder ptxBuilderAtomicRMW;
|
|
std::string tyId = valueElemNBits * vec == 64
|
|
? "l"
|
|
: (valueElemNBits * vec == 32 ? "r" : "h");
|
|
auto *dstOpr = ptxBuilderAtomicRMW.newOperand("=" + tyId, /*init=*/true);
|
|
auto *ptrOpr = ptxBuilderAtomicRMW.newAddrOperand(rmwPtr, "l");
|
|
auto *valOpr = ptxBuilderAtomicRMW.newOperand(rmwVal, tyId);
|
|
|
|
auto &atom = ptxBuilderAtomicRMW.create<>("atom")->global().o("gpu");
|
|
auto rmwOp = stringifyRMWOp(atomicRmwAttr).str();
|
|
auto sBits = std::to_string(valueElemNBits);
|
|
switch (atomicRmwAttr) {
|
|
case RMWOp::AND:
|
|
sTy = "b" + sBits;
|
|
break;
|
|
case RMWOp::OR:
|
|
sTy = "b" + sBits;
|
|
break;
|
|
case RMWOp::XOR:
|
|
sTy = "b" + sBits;
|
|
break;
|
|
case RMWOp::ADD:
|
|
sTy = "s" + sBits;
|
|
break;
|
|
case RMWOp::FADD:
|
|
rmwOp = "add";
|
|
rmwOp += (valueElemNBits == 16 ? ".noftz" : "");
|
|
sTy = "f" + sBits;
|
|
sTy += (vec == 2 && valueElemNBits == 16) ? "x2" : "";
|
|
break;
|
|
case RMWOp::MAX:
|
|
sTy = "s" + sBits;
|
|
break;
|
|
case RMWOp::MIN:
|
|
sTy = "s" + sBits;
|
|
break;
|
|
case RMWOp::UMAX:
|
|
rmwOp = "max";
|
|
sTy = "u" + sBits;
|
|
break;
|
|
case RMWOp::UMIN:
|
|
rmwOp = "min";
|
|
sTy = "u" + sBits;
|
|
break;
|
|
case RMWOp::XCHG:
|
|
sTy = "b" + sBits;
|
|
break;
|
|
default:
|
|
return failure();
|
|
}
|
|
atom.o(rmwOp).o(sTy);
|
|
if (tensorTy) {
|
|
atom(dstOpr, ptrOpr, valOpr).predicate(rmwMask);
|
|
auto retType = vec == 1 ? valueElemTy : vecTy;
|
|
auto ret = ptxBuilderAtomicRMW.launch(rewriter, loc, retType);
|
|
for (int ii = 0; ii < vec; ++ii) {
|
|
resultVals[i + ii] =
|
|
vec == 1 ? ret : extract_element(valueElemTy, ret, i32_val(ii));
|
|
}
|
|
} else {
|
|
PTXBuilder ptxBuilderMemfence;
|
|
auto memfenc = ptxBuilderMemfence.create<PTXInstr>("membar")->o("gl");
|
|
memfenc();
|
|
auto ASMReturnTy = void_ty(ctx);
|
|
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
|
|
rmwMask = and_(rmwMask, icmp_eq(tid, i32_val(0)));
|
|
atom(dstOpr, ptrOpr, valOpr).predicate(rmwMask);
|
|
auto old = ptxBuilderAtomicRMW.launch(rewriter, loc, valueElemTy);
|
|
Value atomPtr = getSharedMemoryBase(loc, rewriter, op.getOperation());
|
|
atomPtr = bitcast(atomPtr, ptr_ty(valueElemTy, 3));
|
|
// Only threads with rmwMask = True store the result
|
|
PTXBuilder ptxBuilderStore;
|
|
auto &storeShared =
|
|
ptxBuilderStore.create<>("st")->shared().o("b" + sBits);
|
|
auto *ptrOpr = ptxBuilderStore.newAddrOperand(atomPtr, "r");
|
|
auto *valOpr = ptxBuilderStore.newOperand(old, tyId);
|
|
storeShared(ptrOpr, valOpr).predicate(rmwMask);
|
|
ptxBuilderStore.launch(rewriter, loc, void_ty(ctx));
|
|
barrier();
|
|
Value ret = load(atomPtr);
|
|
barrier();
|
|
rewriter.replaceOp(op, {ret});
|
|
}
|
|
}
|
|
if (tensorTy) {
|
|
Type structTy = getTypeConverter()->convertType(tensorTy);
|
|
Value resultStruct = getTypeConverter()->packLLElements(
|
|
loc, resultVals, rewriter, structTy);
|
|
rewriter.replaceOp(op, {resultStruct});
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct InsertSliceOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<tensor::InsertSliceOp> {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
tensor::InsertSliceOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(tensor::InsertSliceOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// %dst = insert_slice %src into %dst[%offsets]
|
|
Location loc = op->getLoc();
|
|
Value dst = op.getDest();
|
|
Value src = op.getSource();
|
|
Value res = op.getResult();
|
|
assert(allocation->getBufferId(res) == Allocation::InvalidBufferId &&
|
|
"Only support in-place insert_slice for now");
|
|
|
|
auto srcTy = src.getType().dyn_cast<RankedTensorType>();
|
|
auto srcLayout = srcTy.getEncoding().dyn_cast<BlockedEncodingAttr>();
|
|
auto srcShape = srcTy.getShape();
|
|
assert(srcLayout && "Unexpected srcLayout in InsertSliceOpConversion");
|
|
|
|
auto dstTy = dst.getType().dyn_cast<RankedTensorType>();
|
|
auto dstLayout = dstTy.getEncoding().dyn_cast<SharedEncodingAttr>();
|
|
auto llDst = adaptor.getDest();
|
|
assert(dstLayout && "Unexpected dstLayout in InsertSliceOpConversion");
|
|
assert(op.hasUnitStride() &&
|
|
"Only unit stride supported by InsertSliceOpConversion");
|
|
|
|
// newBase = base + offset
|
|
// Triton support either static and dynamic offsets
|
|
auto smemObj = getSharedMemoryObjectFromStruct(loc, llDst, rewriter);
|
|
SmallVector<Value, 4> offsets;
|
|
SmallVector<Value, 4> srcStrides;
|
|
auto mixedOffsets = op.getMixedOffsets();
|
|
for (auto i = 0; i < mixedOffsets.size(); ++i) {
|
|
if (op.isDynamicOffset(i)) {
|
|
offsets.emplace_back(adaptor.getOffsets()[i]);
|
|
} else {
|
|
offsets.emplace_back(i32_val(op.getStaticOffset(i)));
|
|
}
|
|
// Like insert_slice_async, we only support slice from one dimension,
|
|
// which has a slice size of 1
|
|
if (op.getStaticSize(i) != 1) {
|
|
srcStrides.emplace_back(smemObj.strides[i]);
|
|
}
|
|
}
|
|
|
|
// Compute the offset based on the original strides of the shared memory
|
|
// object
|
|
auto offset = dot(rewriter, loc, offsets, smemObj.strides);
|
|
auto elemTy = getTypeConverter()->convertType(dstTy.getElementType());
|
|
auto elemPtrTy = ptr_ty(elemTy, 3);
|
|
auto smemBase = gep(elemPtrTy, smemObj.base, offset);
|
|
|
|
auto llSrc = adaptor.getSource();
|
|
auto srcIndices = emitIndices(loc, rewriter, srcLayout, srcTy);
|
|
storeDistributedToShared(src, llSrc, srcStrides, srcIndices, dst, smemBase,
|
|
elemTy, loc, rewriter);
|
|
// Barrier is not necessary.
|
|
// The membar pass knows that it writes to shared memory and will handle it
|
|
// properly.
|
|
rewriter.replaceOp(op, llDst);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct InsertSliceAsyncOpConversion
|
|
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::InsertSliceAsyncOp>,
|
|
public LoadStoreConversionBase {
|
|
using ConvertTritonGPUOpToLLVMPattern<
|
|
triton::gpu::InsertSliceAsyncOp>::ConvertTritonGPUOpToLLVMPattern;
|
|
|
|
InsertSliceAsyncOpConversion(
|
|
TritonGPUToLLVMTypeConverter &converter, const Allocation *allocation,
|
|
Value smem,
|
|
ConvertTritonGPUOpToLLVMPatternBase::IndexCacheInfo &indexCacheInfo,
|
|
AxisInfoAnalysis &axisAnalysisPass, PatternBenefit benefit)
|
|
: ConvertTritonGPUOpToLLVMPattern<triton::gpu::InsertSliceAsyncOp>(
|
|
converter, allocation, smem, indexCacheInfo, benefit),
|
|
LoadStoreConversionBase(axisAnalysisPass) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(triton::gpu::InsertSliceAsyncOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// insert_slice_async %src, %dst, %index, %mask, %other
|
|
auto loc = op.getLoc();
|
|
Value src = op.getSrc();
|
|
Value dst = op.getDst();
|
|
Value res = op.getResult();
|
|
Value mask = op.getMask();
|
|
Value other = op.getOther();
|
|
assert(allocation->getBufferId(res) == Allocation::InvalidBufferId &&
|
|
"Only support in-place insert_slice_async for now");
|
|
|
|
auto srcTy = src.getType().cast<RankedTensorType>();
|
|
auto resTy = dst.getType().cast<RankedTensorType>();
|
|
auto resElemTy = getTypeConverter()->convertType(resTy.getElementType());
|
|
auto srcBlockedLayout = srcTy.getEncoding().cast<BlockedEncodingAttr>();
|
|
auto resSharedLayout = resTy.getEncoding().cast<SharedEncodingAttr>();
|
|
auto srcShape = srcTy.getShape();
|
|
assert(srcShape.size() == 2 &&
|
|
"insert_slice_async: Unexpected rank of %src");
|
|
|
|
Value llDst = adaptor.getDst();
|
|
Value llSrc = adaptor.getSrc();
|
|
Value llMask = adaptor.getMask();
|
|
Value llOther = adaptor.getOther();
|
|
Value llIndex = adaptor.getIndex();
|
|
|
|
// %src
|
|
auto srcElems = getTypeConverter()->unpackLLElements(loc, llSrc, rewriter,
|
|
src.getType());
|
|
|
|
// %dst
|
|
auto dstTy = dst.getType().cast<RankedTensorType>();
|
|
auto dstShape = dstTy.getShape();
|
|
auto smemObj = getSharedMemoryObjectFromStruct(loc, llDst, rewriter);
|
|
auto axis = op->getAttrOfType<IntegerAttr>("axis").getInt();
|
|
SmallVector<Value, 4> offsetVals;
|
|
SmallVector<Value, 4> srcStrides;
|
|
for (auto i = 0; i < dstShape.size(); ++i) {
|
|
if (i == axis) {
|
|
offsetVals.emplace_back(llIndex);
|
|
} else {
|
|
offsetVals.emplace_back(i32_val(0));
|
|
srcStrides.emplace_back(smemObj.strides[i]);
|
|
}
|
|
}
|
|
// Compute the offset based on the original dimensions of the shared
|
|
// memory object
|
|
auto dstOffset = dot(rewriter, loc, offsetVals, smemObj.strides);
|
|
auto dstPtrTy = ptr_ty(resElemTy, 3);
|
|
Value dstPtrBase = gep(dstPtrTy, smemObj.base, dstOffset);
|
|
|
|
// %mask
|
|
SmallVector<Value> maskElems;
|
|
if (llMask) {
|
|
maskElems = getTypeConverter()->unpackLLElements(loc, llMask, rewriter,
|
|
mask.getType());
|
|
assert(srcElems.size() == maskElems.size());
|
|
}
|
|
|
|
// %other
|
|
SmallVector<Value> otherElems;
|
|
if (llOther) {
|
|
// FIXME(Keren): always assume other is 0 for now
|
|
// It's not necessary for now because the pipeline pass will skip
|
|
// generating insert_slice_async if the load op has any "other" tensor.
|
|
// assert(false && "insert_slice_async: Other value not supported yet");
|
|
otherElems = getTypeConverter()->unpackLLElements(loc, llOther, rewriter,
|
|
other.getType());
|
|
assert(srcElems.size() == otherElems.size());
|
|
}
|
|
|
|
// We don't use getVec() here because we are copying from memory to memory.
|
|
// If contiguity > vector size, we can have one pointer maintaining the
|
|
// start of the vector and the other pointer moving to the next vector.
|
|
unsigned inVec = getContiguity(src);
|
|
unsigned outVec = resSharedLayout.getVec();
|
|
unsigned minVec = std::min(outVec, inVec);
|
|
unsigned numElems = getElemsPerThread(srcTy);
|
|
unsigned perPhase = resSharedLayout.getPerPhase();
|
|
unsigned maxPhase = resSharedLayout.getMaxPhase();
|
|
auto sizePerThread = srcBlockedLayout.getSizePerThread();
|
|
auto threadsPerCTA = getThreadsPerCTA(srcBlockedLayout);
|
|
auto inOrder = srcBlockedLayout.getOrder();
|
|
DenseMap<unsigned, Value> sharedPtrs =
|
|
getSwizzledSharedPtrs(loc, inVec, srcTy, resSharedLayout, resElemTy,
|
|
smemObj, rewriter, offsetVals, srcStrides);
|
|
|
|
// If perPhase * maxPhase > threadsPerCTA, we will have elements
|
|
// that share the same tile indices. The index calculation will
|
|
// be cached.
|
|
auto numSwizzleRows = std::max<unsigned>(
|
|
(perPhase * maxPhase) / threadsPerCTA[inOrder[1]], 1);
|
|
// A sharedLayout encoding has a "vec" parameter.
|
|
// On the column dimension, if inVec > outVec, it means we have to divide
|
|
// single vector read into multiple ones
|
|
auto numVecCols = std::max<unsigned>(inVec / outVec, 1);
|
|
|
|
auto srcIndices = emitIndices(loc, rewriter, srcBlockedLayout, srcTy);
|
|
|
|
for (unsigned elemIdx = 0; elemIdx < numElems; elemIdx += minVec) {
|
|
// 16 * 8 = 128bits
|
|
auto maxBitWidth =
|
|
std::max<unsigned>(128, resElemTy.getIntOrFloatBitWidth());
|
|
auto vecBitWidth = resElemTy.getIntOrFloatBitWidth() * minVec;
|
|
auto bitWidth = std::min<unsigned>(maxBitWidth, vecBitWidth);
|
|
auto numWords = vecBitWidth / bitWidth;
|
|
auto numWordElems = bitWidth / resElemTy.getIntOrFloatBitWidth();
|
|
|
|
// Tune CG and CA here.
|
|
auto byteWidth = bitWidth / 8;
|
|
CacheModifier srcCacheModifier =
|
|
byteWidth == 16 ? CacheModifier::CG : CacheModifier::CA;
|
|
assert(byteWidth == 16 || byteWidth == 8 || byteWidth == 4);
|
|
auto resByteWidth = resElemTy.getIntOrFloatBitWidth() / 8;
|
|
|
|
Value basePtr = sharedPtrs[elemIdx];
|
|
for (size_t wordIdx = 0; wordIdx < numWords; ++wordIdx) {
|
|
PTXBuilder ptxBuilder;
|
|
auto wordElemIdx = wordIdx * numWordElems;
|
|
auto ©AsyncOp =
|
|
*ptxBuilder.create<PTXCpAsyncLoadInstr>(srcCacheModifier);
|
|
auto *dstOperand =
|
|
ptxBuilder.newAddrOperand(basePtr, "r", wordElemIdx * resByteWidth);
|
|
auto *srcOperand =
|
|
ptxBuilder.newAddrOperand(srcElems[elemIdx + wordElemIdx], "l");
|
|
auto *copySize = ptxBuilder.newConstantOperand(byteWidth);
|
|
auto *srcSize = copySize;
|
|
if (op.getMask()) {
|
|
// We don't use predicate in this case, setting src-size to 0
|
|
// if there's any mask. cp.async will automatically fill the
|
|
// remaining slots with 0 if cp-size > src-size.
|
|
// XXX(Keren): Always assume other = 0 for now.
|
|
auto selectOp = select(maskElems[elemIdx + wordElemIdx],
|
|
i32_val(byteWidth), i32_val(0));
|
|
srcSize = ptxBuilder.newOperand(selectOp, "r");
|
|
}
|
|
copyAsyncOp(dstOperand, srcOperand, copySize, srcSize);
|
|
ptxBuilder.launch(rewriter, loc, void_ty(getContext()));
|
|
}
|
|
}
|
|
|
|
rewriter.replaceOp(op, llDst);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void populateLoadStoreOpToLLVMPatterns(
|
|
TritonGPUToLLVMTypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
int numWarps, AxisInfoAnalysis &axisInfoAnalysis,
|
|
const Allocation *allocation, Value smem,
|
|
ConvertTritonGPUOpToLLVMPatternBase::IndexCacheInfo &indexCacheInfo,
|
|
PatternBenefit benefit) {
|
|
patterns.add<LoadOpConversion>(typeConverter, axisInfoAnalysis, benefit);
|
|
patterns.add<StoreOpConversion>(typeConverter, axisInfoAnalysis, benefit);
|
|
patterns.add<AtomicCASOpConversion>(typeConverter, allocation, smem,
|
|
axisInfoAnalysis, benefit);
|
|
patterns.add<AtomicRMWOpConversion>(typeConverter, allocation, smem,
|
|
axisInfoAnalysis, benefit);
|
|
patterns.add<InsertSliceOpConversion>(typeConverter, allocation, smem,
|
|
indexCacheInfo, benefit);
|
|
patterns.add<InsertSliceAsyncOpConversion>(typeConverter, allocation, smem,
|
|
indexCacheInfo, axisInfoAnalysis,
|
|
benefit);
|
|
}
|