Files
ROCm/docs/sphinx/_toc.yml.in
Peter Park a32210fa7e Add ROCm 7.9.0 documentation
Add release notes

Add install instructions

Add PyTorch + ComfyUI instructions

Add custom selector directives

Add JS and CSS for selector

Add custom icon directive and utils

Clean up conf.py
2025-10-20 12:17:50 -04:00

233 lines
12 KiB
YAML

# Anywhere {branch} is used, the branch name will be substituted.
# These comments will also be removed.
defaults:
numbered: False
maxdepth: 6
root: index
subtrees:
- entries:
- file: about/release-notes.md
title: Release notes
- file: install/compatibility-matrix.md
title: Compatibility matrix
- caption: Installation
entries:
- file: install/rocm
title: Installation
- url: https://github.com/ROCm/TheRock
title: Build from source
- caption: ROCm for AI
entries:
- file: install/pytorch-comfyui
title: Install PyTorch and ComfyUI
# - url: https://rocm.docs.amd.com/projects/install-on-linux/en/${branch}/
# title: ROCm on Linux
# - url: https://rocm.docs.amd.com/projects/install-on-windows/en/latest/
# title: HIP SDK on Windows
# - url: https://rocm.docs.amd.com/projects/radeon-ryzen/en/latest/index.html
# title: ROCm on Radeon and Ryzen
# - file: how-to/deep-learning-rocm.md
# title: Deep learning frameworks
# subtrees:
# - entries:
# - file: compatibility/ml-compatibility/pytorch-compatibility.rst
# title: PyTorch compatibility
# - file: compatibility/ml-compatibility/tensorflow-compatibility.rst
# title: TensorFlow compatibility
# - file: compatibility/ml-compatibility/jax-compatibility.rst
# title: JAX compatibility
# - file: compatibility/ml-compatibility/verl-compatibility.rst
# title: verl compatibility
# - file: compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst
# title: Stanford Megatron-LM compatibility
# - file: compatibility/ml-compatibility/dgl-compatibility.rst
# title: DGL compatibility
# - file: compatibility/ml-compatibility/megablocks-compatibility.rst
# title: Megablocks compatibility
# - file: compatibility/ml-compatibility/taichi-compatibility.rst
# title: Taichi compatibility
# - file: compatibility/ml-compatibility/ray-compatibility.rst
# title: Ray compatibility
# - file: compatibility/ml-compatibility/llama-cpp-compatibility.rst
# title: llama.cpp compatibility
# - file: compatibility/ml-compatibility/flashinfer-compatibility.rst
# title: FlashInfer compatibility
# - caption: How to
# entries:
# - file: how-to/rocm-for-ai/index.rst
# title: Use ROCm for AI
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/install.rst
# title: Installation
# - file: how-to/rocm-for-ai/system-setup/index.rst
# title: System setup
# entries:
# - file: how-to/rocm-for-ai/system-setup/prerequisite-system-validation.rst
# title: System validation
# - file: how-to/rocm-for-ai/system-setup/multi-node-setup.rst
# title: Multi-node setup
# - file: how-to/rocm-for-ai/system-setup/system-health-check.rst
# title: System health benchmarks
# - file: how-to/rocm-for-ai/training/index.rst
# title: Training
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/training/benchmark-docker/primus-megatron.rst
# title: Train a model with Primus and Megatron-LM
# - file: how-to/rocm-for-ai/training/benchmark-docker/primus-pytorch.rst
# title: Train a model with Primus and PyTorch
# - file: how-to/rocm-for-ai/training/benchmark-docker/jax-maxtext.rst
# title: Train a model with JAX MaxText
# - file: how-to/rocm-for-ai/training/benchmark-docker/mpt-llm-foundry
# title: Train a model with LLM Foundry
# - file: how-to/rocm-for-ai/training/scale-model-training.rst
# title: Scale model training
#
# - file: how-to/rocm-for-ai/fine-tuning/index.rst
# title: Fine-tuning LLMs
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/fine-tuning/overview.rst
# title: Conceptual overview
# - file: how-to/rocm-for-ai/fine-tuning/fine-tuning-and-inference.rst
# title: Fine-tuning
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/fine-tuning/single-gpu-fine-tuning-and-inference.rst
# title: Use a single accelerator
# - file: how-to/rocm-for-ai/fine-tuning/multi-gpu-fine-tuning-and-inference.rst
# title: Use multiple accelerators
#
# - file: how-to/rocm-for-ai/inference/index.rst
# title: Inference
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/inference/hugging-face-models.rst
# title: Run models from Hugging Face
# - file: how-to/rocm-for-ai/inference/llm-inference-frameworks.rst
# title: LLM inference frameworks
# - file: how-to/rocm-for-ai/inference/benchmark-docker/vllm.rst
# title: vLLM inference performance testing
# - file: how-to/rocm-for-ai/inference/benchmark-docker/pytorch-inference.rst
# title: PyTorch inference performance testing
# - file: how-to/rocm-for-ai/inference/benchmark-docker/sglang.rst
# title: SGLang inference performance testing
# - file: how-to/rocm-for-ai/inference/benchmark-docker/sglang-distributed.rst
# title: SGLang distributed inference with Mooncake
# - file: how-to/rocm-for-ai/inference/deploy-your-model.rst
# title: Deploy your model
#
# - file: how-to/rocm-for-ai/inference-optimization/index.rst
# title: Inference optimization
# subtrees:
# - entries:
# - file: how-to/rocm-for-ai/inference-optimization/model-quantization.rst
# - file: how-to/rocm-for-ai/inference-optimization/model-acceleration-libraries.rst
# - file: how-to/rocm-for-ai/inference-optimization/optimizing-with-composable-kernel.md
# title: Optimize with Composable Kernel
# - file: how-to/rocm-for-ai/inference-optimization/optimizing-triton-kernel.rst
# title: Optimize Triton kernels
# - file: how-to/rocm-for-ai/inference-optimization/profiling-and-debugging.rst
# title: Profile and debug
# - file: how-to/rocm-for-ai/inference-optimization/workload.rst
# title: Workload optimization
#
# - url: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/
# title: AI tutorials
#
# - file: how-to/rocm-for-hpc/index.rst
# title: Use ROCm for HPC
# - file: how-to/system-optimization/index.rst
# title: System optimization
# - file: how-to/gpu-performance/mi300x.rst
# title: AMD Instinct MI300X performance guides
# - file: how-to/system-debugging.md
# - file: conceptual/compiler-topics.md
# title: Use advanced compiler features
# subtrees:
# - entries:
# - url: https://rocm.docs.amd.com/projects/llvm-project/en/latest/index.html
# title: ROCm compiler infrastructure
# - url: https://rocm.docs.amd.com/projects/llvm-project/en/latest/conceptual/using-gpu-sanitizer.html
# title: Use AddressSanitizer
# - url: https://rocm.docs.amd.com/projects/llvm-project/en/latest/conceptual/openmp.html
# title: OpenMP support
# - file: how-to/setting-cus
# title: Set the number of CUs
# - file: how-to/Bar-Memory.rst
# title: Troubleshoot BAR access limitation
# - url: https://github.com/amd/rocm-examples
# title: ROCm examples
#
# - caption: Conceptual
# entries:
# - file: conceptual/gpu-arch.md
# title: GPU architecture overview
# subtrees:
# - entries:
# - file: conceptual/gpu-arch/mi300.md
# title: MI300 microarchitecture
# subtrees:
# - entries:
# - url: https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/amd-instinct-mi300-cdna3-instruction-set-architecture.pdf
# title: AMD Instinct MI300/CDNA3 ISA
# - url: https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
# title: White paper
# - file: conceptual/gpu-arch/mi300-mi200-performance-counters.rst
# title: MI300 and MI200 performance counters
# - file: conceptual/gpu-arch/mi350-performance-counters.rst
# title: MI350 series performance counters
# - file: conceptual/gpu-arch/mi250.md
# title: MI250 microarchitecture
# subtrees:
# - entries:
# - url: https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
# title: AMD Instinct MI200/CDNA2 ISA
# - url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
# title: White paper
# - file: conceptual/gpu-arch/mi100.md
# title: MI100 microarchitecture
# subtrees:
# - entries:
# - url: https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
# title: AMD Instinct MI100/CDNA1 ISA
# - url: https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
# title: White paper
# - file: conceptual/file-reorg.md
# title: File structure (Linux FHS)
# - file: conceptual/gpu-isolation.md
# title: GPU isolation techniques
# - file: conceptual/cmake-packages.rst
# title: Using CMake
# - file: conceptual/ai-pytorch-inception.md
# title: Inception v3 with PyTorch
#
# - caption: Reference
# entries:
# - file: reference/api-libraries.md
# title: ROCm libraries
# - file: reference/rocm-tools.md
# title: ROCm tools, compilers, and runtimes
# - file: reference/gpu-arch-specs.rst
# - file: reference/gpu-atomics-operation.rst
# - file: reference/precision-support.rst
# title: Data types and precision support
# - file: reference/graph-safe-support.rst
# title: Graph safe support
# - caption: Contribute
# entries:
# - file: contribute/contributing.md
# title: Contributing to the ROCm documentation
# subtrees:
# - entries:
# - file: contribute/toolchain.md
# title: ROCm documentation toolchain
# - file: contribute/building.md
# - file: contribute/feedback.md
# title: Providing feedback about the ROCm documentation
# - file: about/license.md
# title: ROCm licenses