Files
ROCm/python/test/regression/test_performance.py

204 lines
7.6 KiB
Python

import subprocess
import sys
import pytest
import torch
import triton
import triton.language as tl
from triton.testing import get_dram_gbps, get_max_tensorcore_tflops
DEVICE_NAME = {7: 'v100', 8: 'a100'}[torch.cuda.get_device_capability()[0]]
#######################
# Utilities
#######################
def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
#######################
# Matrix Multiplication
#######################
sm_clocks = {'v100': 1350, 'a100': 1350}
mem_clocks = {'v100': 877, 'a100': 1215}
matmul_data = {
'v100': {
# square
(512, 512, 512): {'float16': 0.158},
(1024, 1024, 1024): {'float16': 0.466},
(2048, 2048, 2048): {'float16': 0.695},
(4096, 4096, 4096): {'float16': 0.831},
(8192, 8192, 8192): {'float16': 0.849},
# tall-skinny
(16, 1024, 1024): {'float16': 0.0128},
(16, 4096, 4096): {'float16': 0.0883},
(16, 8192, 8192): {'float16': 0.101},
(64, 1024, 1024): {'float16': 0.073},
(64, 4096, 4096): {'float16': 0.270},
(64, 8192, 8192): {'float16': 0.459},
(1024, 64, 1024): {'float16': 0.0692},
(4096, 64, 4096): {'float16': 0.264},
(8192, 64, 8192): {'float16': 0.452},
},
# NOTE:
# A100 in the CI server is slow-ish for some reason.
# On some other servers, we are getting about 90% peak for 8kx8x8k float16
'a100': {
(512, 512, 512): {'float16': 0.08, 'float32': 0.13, 'int8': 0.05},
(1024, 1024, 1024): {'float16': 0.33, 'float32': 0.35, 'int8': 0.169},
(2048, 2048, 2048): {'float16': 0.64, 'float32': 0.57, 'int8': 0.34},
(4096, 4096, 4096): {'float16': 0.81, 'float32': 0.75, 'int8': 0.46},
(8192, 8192, 8192): {'float16': 0.77, 'float32': 0.85, 'int8': 0.51},
# tall-skinny
(16, 1024, 1024): {'float16': 0.0077, 'float32': 0.0127, 'int8': 0.005},
(16, 4096, 4096): {'float16': 0.0363, 'float32': 0.0457, 'int8': 0.0259},
(16, 8192, 8192): {'float16': 0.07, 'float32': 0.0648, 'int8': 0.0431},
(64, 1024, 1024): {'float16': 0.0271, 'float32': 0.0509, 'int8': 0.0169},
(64, 4096, 4096): {'float16': 0.16, 'float32': 0.162, 'int8': 0.097},
(64, 8192, 8192): {'float16': 0.30, 'float32': 0.257, 'int8': 0.174},
(1024, 64, 1024): {'float16': 0.0263, 'float32': 0.0458, 'int8': 0.017},
(4096, 64, 4096): {'float16': 0.16, 'float32': 0.177, 'int8': 0.102},
(8192, 64, 8192): {'float16': 0.25, 'float32': 0.230, 'int8': 0.177},
}
}
@pytest.mark.parametrize('M, N, K, dtype_str',
[(M, N, K, dtype_str)
for M, N, K in matmul_data[DEVICE_NAME].keys()
for dtype_str in ['float16']])
def test_matmul(M, N, K, dtype_str):
if dtype_str in ['float32', 'int8'] and DEVICE_NAME != 'a100':
pytest.skip('Only test float32 & int8 on a100')
dtype = {'float16': torch.float16, 'float32': torch.float32, 'int8': torch.int8}[dtype_str]
torch.manual_seed(0)
ref_gpu_util = matmul_data[DEVICE_NAME][(M, N, K)][dtype_str]
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
max_gpu_perf = get_max_tensorcore_tflops(dtype, clock_rate=cur_sm_clock * 1e3)
if dtype == torch.int8:
a = torch.randint(-128, 127, (M, K), dtype=dtype, device='cuda')
b = torch.randint(-128, 127, (N, K), dtype=dtype, device='cuda')
b = b.t() # only test row-col layout
else:
a = torch.randn((M, K), dtype=dtype, device='cuda')
b = torch.randn((K, N), dtype=dtype, device='cuda')
fn = lambda: triton.ops.matmul(a, b)
ms = triton.testing.do_bench(fn, percentiles=None, warmup=100, rep=300)
cur_gpu_perf = 2. * M * N * K / ms * 1e-9
cur_gpu_util = cur_gpu_perf / max_gpu_perf
assert triton.testing.allclose(cur_gpu_util, ref_gpu_util, atol=0.01, rtol=0.05)
#######################
# Element-Wise
#######################
@triton.jit
def _add(x_ptr, y_ptr, output_ptr, n_elements,
BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
elementwise_data = {
'v100': {
1024 * 16: 0.0219,
1024 * 64: 0.0791,
1024 * 256: 0.243,
1024 * 1024: 0.530,
1024 * 4096: 0.796,
1024 * 16384: 0.905,
1024 * 65536: 0.939,
},
'a100': {
1024 * 16: 0.008,
1024 * 64: 0.034,
1024 * 256: 0.114,
1024 * 1024: 0.315,
1024 * 4096: 0.580,
1024 * 16384: 0.782,
1024 * 65536: 0.850,
}
}
@pytest.mark.parametrize('N', elementwise_data[DEVICE_NAME].keys())
def test_elementwise(N):
torch.manual_seed(0)
ref_gpu_util = elementwise_data[DEVICE_NAME][N]
max_gpu_perf = get_dram_gbps()
z = torch.empty((N, ), dtype=torch.float16, device='cuda')
x = torch.randn_like(z)
y = torch.randn_like(z)
grid = lambda args: (triton.cdiv(N, args['BLOCK_SIZE']), )
fn = lambda: _add[grid](x, y, z, N, BLOCK_SIZE=1024)
ms = triton.testing.do_bench(fn, percentiles=None, warmup=100, rep=500)
cur_gpu_perf = 3. * N * z.element_size() / ms * 1e-6
cur_gpu_util = cur_gpu_perf / max_gpu_perf
assert triton.testing.allclose(cur_gpu_util, ref_gpu_util, atol=0.01, rtol=0.05)
#######################
# Flash-Attention
#######################
flash_attention_data = {
"a100": {
(4, 48, 4096, 64, 'forward', 'float16'): 0.37,
(4, 48, 4096, 64, 'backward', 'float16'): 0.25,
}
}
@pytest.mark.parametrize("Z, H, N_CTX, D_HEAD", [[4, 48, 4096, 64]])
@pytest.mark.parametrize("mode", ['forward', 'backward'])
@pytest.mark.parametrize("dtype_str", ['float16'])
def test_flash_attention(Z, H, N_CTX, D_HEAD, mode, dtype_str):
is_backward = mode == 'backward'
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
pytest.skip("Flash attention only supported for compute capability < 80")
torch.manual_seed(20)
dtype = {'float16': torch.float16, 'float32': torch.float32, 'int8': torch.int8}[dtype_str]
# init data
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2).requires_grad_()
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2).requires_grad_()
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2).requires_grad_()
sm_scale = 0.2
# benchmark
fn = lambda: triton.ops.attention(q, k, v, sm_scale)
if is_backward:
o = fn()
do = torch.randn_like(o)
fn = lambda: o.backward(do, retain_graph=True)
ms = triton.testing.do_bench(fn, percentiles=None, warmup=100, rep=500)
# compute flops
flops_per_matmul = 2. * Z * H * N_CTX * N_CTX * D_HEAD * 0.5
total_flops = 2 * flops_per_matmul
if is_backward:
total_flops *= 2.5 # 2.0(bwd) + 0.5(recompute)
cur_gpu_perf = total_flops / ms * 1e-9
# maximum flops
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
max_gpu_perf = get_max_tensorcore_tflops(dtype, clock_rate=cur_sm_clock * 1e3)
cur_gpu_util = cur_gpu_perf / max_gpu_perf
ref_gpu_util = flash_attention_data[DEVICE_NAME][(Z, H, N_CTX, D_HEAD, mode, dtype_str)]
assert triton.testing.allclose(cur_gpu_util, ref_gpu_util, atol=0.01, rtol=0.05)