mirror of
https://github.com/ROCm/ROCm.git
synced 2026-02-21 03:00:39 -05:00
616 lines
21 KiB
C++
616 lines
21 KiB
C++
#include "triton/Analysis/Utility.h"
|
|
#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
|
|
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "triton/Dialect/Triton/IR/Dialect.h"
|
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
|
#include "triton/Tools/Sys/GetEnv.hpp"
|
|
#include <deque>
|
|
|
|
namespace mlir {
|
|
|
|
namespace {
|
|
|
|
int getParentAxis(Attribute layout, int axis) {
|
|
if (auto sliceEncoding = layout.dyn_cast<triton::gpu::SliceEncodingAttr>()) {
|
|
axis = axis < sliceEncoding.getDim() ? axis : axis + 1;
|
|
return getParentAxis(sliceEncoding.getParent(), axis);
|
|
}
|
|
return axis;
|
|
}
|
|
|
|
SmallVector<unsigned> getParentOrder(Attribute layout) {
|
|
if (auto sliceEncoding = layout.dyn_cast<triton::gpu::SliceEncodingAttr>()) {
|
|
return getParentOrder(sliceEncoding.getParent());
|
|
}
|
|
return triton::gpu::getOrder(layout);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool ReduceOpHelper::isFastReduction() {
|
|
// Disable fast reduction only for debugging purpose
|
|
if (::triton::tools::getBoolEnv("DISABLE_FAST_REDUCTION"))
|
|
return false;
|
|
return getParentAxis(getSrcLayout(), axis) ==
|
|
getParentOrder(getSrcLayout())[0];
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getInterWarpSize() {
|
|
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
|
|
unsigned sizeIntraWarps = getIntraWarpSize();
|
|
return std::min(srcReduceDimSize / sizeIntraWarps,
|
|
triton::gpu::getWarpsPerCTA(getSrcLayout())[axis]);
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getIntraWarpSize() {
|
|
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
|
|
return std::min(srcReduceDimSize,
|
|
triton::gpu::getThreadsPerWarp(getSrcLayout())[axis]);
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getInterWarpSizeWithUniqueData() {
|
|
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
|
|
unsigned sizeIntraWarps = getIntraWarpSizeWithUniqueData();
|
|
return std::min(srcReduceDimSize / sizeIntraWarps,
|
|
triton::gpu::getWarpsPerCTAWithUniqueData(
|
|
getSrcLayout(), getSrcShape())[axis]);
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getIntraWarpSizeWithUniqueData() {
|
|
auto srcReduceDimSize = static_cast<unsigned>(srcShape[axis]);
|
|
unsigned elementPerThreads = triton::gpu::getUniqueContigPerThread(
|
|
getSrcLayout(), getSrcShape())[axis];
|
|
return std::min(srcReduceDimSize / elementPerThreads,
|
|
triton::gpu::getThreadsPerWarpWithUniqueData(
|
|
getSrcLayout(), getSrcShape())[axis]);
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getThreadsReductionAxis() {
|
|
auto srcLayout = getSrcLayout();
|
|
auto srcShape = getSrcShape();
|
|
return triton::gpu::getThreadsPerWarpWithUniqueData(srcLayout,
|
|
srcShape)[axis] *
|
|
triton::gpu::getWarpsPerCTAWithUniqueData(srcLayout, srcShape)[axis];
|
|
}
|
|
|
|
SmallVector<unsigned> ReduceOpHelper::getScratchConfigBasic() {
|
|
auto smemShape = convertType<unsigned>(getSrcShape());
|
|
smemShape[axis] = std::min(smemShape[axis], getThreadsReductionAxis());
|
|
return smemShape;
|
|
}
|
|
|
|
bool ReduceOpHelper::isWarpSynchronous() {
|
|
auto argsLayout = getSrcLayout();
|
|
return isFastReduction() &&
|
|
(triton::gpu::getWarpsPerCTA(argsLayout)[axis] == 1);
|
|
}
|
|
|
|
SmallVector<SmallVector<unsigned>> ReduceOpHelper::getScratchConfigsFast() {
|
|
SmallVector<SmallVector<unsigned>> smemShapes(3);
|
|
|
|
auto argLayout = getSrcLayout();
|
|
auto argLayoutMma = argLayout.dyn_cast<triton::gpu::MmaEncodingAttr>();
|
|
|
|
// that case doesn't need inter-warp communication
|
|
if (isWarpSynchronous())
|
|
return {{0, 0}, {0, 0}};
|
|
|
|
/// shared memory block0
|
|
smemShapes[0] = convertType<unsigned>(getSrcShape());
|
|
smemShapes[0][axis] = getInterWarpSize();
|
|
|
|
/// FIXME(Qingyi): This size is actually larger than required.
|
|
/// shared memory block1:
|
|
auto mod = op->getParentOfType<ModuleOp>();
|
|
unsigned numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
|
|
unsigned threadsPerWarp =
|
|
triton::gpu::TritonGPUDialect::getThreadsPerWarp(mod);
|
|
smemShapes[1].push_back(numWarps * threadsPerWarp);
|
|
|
|
return smemShapes;
|
|
}
|
|
|
|
unsigned ReduceOpHelper::getScratchSizeInBytes() {
|
|
unsigned elems = 0;
|
|
if (isFastReduction()) {
|
|
auto smemShapes = getScratchConfigsFast();
|
|
for (const auto &smemShape : smemShapes)
|
|
elems = std::max(elems, product<unsigned>(smemShape));
|
|
} else {
|
|
auto smemShape = getScratchConfigBasic();
|
|
elems = product<unsigned>(smemShape);
|
|
}
|
|
|
|
unsigned bytesPerElem = 0;
|
|
for (const auto &ty : srcElementTypes) {
|
|
bytesPerElem += ty.getIntOrFloatBitWidth() / 8;
|
|
}
|
|
return bytesPerElem * elems;
|
|
}
|
|
|
|
bool ReduceOpHelper::isSupportedLayout() {
|
|
auto srcLayout = getSrcLayout();
|
|
if (srcLayout.isa<triton::gpu::BlockedEncodingAttr>()) {
|
|
return true;
|
|
}
|
|
if (auto mmaLayout = srcLayout.dyn_cast<triton::gpu::MmaEncodingAttr>()) {
|
|
if (mmaLayout.isAmpere()) {
|
|
return true;
|
|
}
|
|
}
|
|
if (auto mfmaLayout = srcLayout.dyn_cast<triton::gpu::MfmaEncodingAttr>()) {
|
|
return true;
|
|
}
|
|
if (auto sliceLayout = srcLayout.dyn_cast<triton::gpu::SliceEncodingAttr>()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getAxisNumElementsPerThread() {
|
|
return getEncoding().getSizePerThread()[getAxis()];
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getNonAxisNumElementsPerThread() {
|
|
SmallVector<unsigned> sizePerThreads = getContigPerThread(getEncoding());
|
|
sizePerThreads[getAxis()] = 1;
|
|
return product<unsigned>(sizePerThreads);
|
|
}
|
|
|
|
Region &ScanLoweringHelper::getCombineOp() { return scanOp.getCombineOp(); }
|
|
|
|
unsigned ScanLoweringHelper::getAxisNumThreadsPerWarp() {
|
|
return triton::gpu::getThreadsPerWarp(getEncoding())[getAxis()];
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getNonAxisNumThreadsPerWarp() {
|
|
auto threadsPerWarp = triton::gpu::getThreadsPerWarp(getEncoding());
|
|
threadsPerWarp[getAxis()] = 1;
|
|
return product<unsigned>(threadsPerWarp);
|
|
}
|
|
|
|
// Return the flat numbers of threads computing independent scan results.
|
|
unsigned ScanLoweringHelper::getNonAxisNumThreadsPerCTA() {
|
|
unsigned numParallelThreadsPerWarp = getNonAxisNumThreadsPerWarp();
|
|
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(getEncoding());
|
|
warpsPerCTA[getAxis()] = 1;
|
|
unsigned numParallelWarpsPerCTA = product<unsigned>(warpsPerCTA);
|
|
return numParallelThreadsPerWarp * numParallelWarpsPerCTA;
|
|
}
|
|
unsigned ScanLoweringHelper::getAxisNumWarps() {
|
|
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(srcEncoding);
|
|
return warpsPerCTA[getAxis()];
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getAxisNumBlocks() {
|
|
auto type = scanOp.getOperand(0).getType().cast<RankedTensorType>();
|
|
auto sizePerThreads = triton::gpu::getSizePerThread(srcEncoding);
|
|
auto threadsPerWarp = triton::gpu::getThreadsPerWarp(srcEncoding);
|
|
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(srcEncoding);
|
|
unsigned axis = getAxis();
|
|
return ceil<unsigned>(
|
|
type.getShape()[axis],
|
|
(sizePerThreads[axis] * threadsPerWarp[axis] * warpsPerCTA[axis]));
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getNonAxisNumBlocks() {
|
|
auto type = scanOp.getOperand(0).getType().cast<RankedTensorType>();
|
|
auto sizePerThreads = triton::gpu::getSizePerThread(srcEncoding);
|
|
auto threadsPerWarp = triton::gpu::getThreadsPerWarp(srcEncoding);
|
|
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(srcEncoding);
|
|
unsigned axis = getAxis();
|
|
unsigned numBlocks = 1;
|
|
for (unsigned i = 0; i < sizePerThreads.size(); i++) {
|
|
if (i == axis)
|
|
continue;
|
|
numBlocks *= ceil<unsigned>(
|
|
type.getShape()[i],
|
|
(sizePerThreads[i] * threadsPerWarp[i] * warpsPerCTA[i]));
|
|
}
|
|
return numBlocks;
|
|
}
|
|
|
|
bool ScanLoweringHelper::isSupported() {
|
|
// TODO: Support the following cases:
|
|
// 1. Scan on non-blocking encodings
|
|
// 2. Scan with multiple operands
|
|
if (!isa<triton::gpu::BlockedEncodingAttr>(srcEncoding))
|
|
return false;
|
|
if (scanOp.getNumOperands() != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getScratchSizeInBytes() {
|
|
auto type = scanOp.getOperand(0).getType().cast<RankedTensorType>();
|
|
unsigned elementSizeInBytes = type.getElementTypeBitWidth() / 8;
|
|
auto mod = scanOp->getParentOfType<ModuleOp>();
|
|
unsigned numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
|
|
unsigned numNonAxisElementsPerWapr =
|
|
getNonAxisNumThreadsPerWarp() * getNonAxisNumElementsPerThread();
|
|
unsigned numElements = numWarps * numNonAxisElementsPerWapr *
|
|
getAxisNumBlocks() * getNonAxisNumBlocks();
|
|
return elementSizeInBytes * numElements;
|
|
}
|
|
|
|
triton::gpu::BlockedEncodingAttr ScanLoweringHelper::getEncoding() {
|
|
return srcEncoding.cast<triton::gpu::BlockedEncodingAttr>();
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getAxisElementStride() {
|
|
auto order = triton::gpu::getOrder(srcEncoding);
|
|
unsigned stride = 1;
|
|
for (unsigned dim : order) {
|
|
if (dim == getAxis())
|
|
return stride;
|
|
stride *= getContigPerThread(getEncoding())[dim];
|
|
}
|
|
llvm_unreachable("Axis not found in order");
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getAxisThreadStride() {
|
|
auto order = triton::gpu::getOrder(srcEncoding);
|
|
unsigned stride = 1;
|
|
for (unsigned dim : order) {
|
|
if (dim == getAxis())
|
|
return stride;
|
|
stride *= getEncoding().getThreadsPerWarp()[dim];
|
|
}
|
|
llvm_unreachable("Axis not found in order");
|
|
}
|
|
|
|
unsigned ScanLoweringHelper::getAxisBlockStride() {
|
|
auto order = triton::gpu::getOrder(srcEncoding);
|
|
unsigned stride = 1;
|
|
auto type = scanOp.getOperand(0).getType().cast<RankedTensorType>();
|
|
auto sizePerThreads = triton::gpu::getSizePerThread(srcEncoding);
|
|
auto threadsPerWarp = triton::gpu::getThreadsPerWarp(srcEncoding);
|
|
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(srcEncoding);
|
|
for (unsigned dim : order) {
|
|
if (dim == getAxis())
|
|
return stride;
|
|
stride *= type.getShape()[dim] /
|
|
(sizePerThreads[dim] * threadsPerWarp[dim] * warpsPerCTA[dim]);
|
|
}
|
|
llvm_unreachable("Axis not found in order");
|
|
}
|
|
|
|
bool maybeSharedAllocationOp(Operation *op) {
|
|
// TODO(Keren): This function can be replaced by adding
|
|
// MemoryEffectOpInterface. We can then use the MemoryEffectOpInterface to
|
|
// query the memory effects of the op.
|
|
auto *dialect = op->getDialect();
|
|
return dialect &&
|
|
(dialect->getTypeID() ==
|
|
mlir::TypeID::get<triton::gpu::TritonGPUDialect>() ||
|
|
dialect->getTypeID() == mlir::TypeID::get<triton::TritonDialect>() ||
|
|
dialect->getTypeID() == mlir::TypeID::get<arith::ArithDialect>() ||
|
|
dialect->getTypeID() == mlir::TypeID::get<tensor::TensorDialect>());
|
|
}
|
|
|
|
bool maybeAliasOp(Operation *op) {
|
|
return isa<triton::gpu::ExtractSliceOp>(op) || isa<triton::TransOp>(op) ||
|
|
isa<triton::gpu::InsertSliceAsyncOp>(op) ||
|
|
isa<tensor::InsertSliceOp>(op);
|
|
}
|
|
|
|
bool supportMMA(triton::DotOp op, int version) {
|
|
// Refer to mma section for the data type supported by Volta and Hopper
|
|
// Tensor Core in
|
|
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
|
|
auto aElemTy = op.getA().getType().cast<RankedTensorType>().getElementType();
|
|
auto bElemTy = op.getB().getType().cast<RankedTensorType>().getElementType();
|
|
|
|
if (aElemTy.isF32() && bElemTy.isF32()) {
|
|
return (op.getAllowTF32() && version == 2) || version == 3;
|
|
}
|
|
return supportMMA(op.getA(), version) && supportMMA(op.getB(), version);
|
|
}
|
|
|
|
#ifdef USE_ROCM
|
|
static bool supportMFMAGranularity(int m, int n, int k) {
|
|
// these limitations are dtype dependent, in future we may relax them
|
|
const int granularityMN = 32;
|
|
const int granularityK = 8;
|
|
if (m % granularityMN != 0 || n % granularityMN != 0)
|
|
return false;
|
|
if (k % granularityK != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool supportMFMA(triton::DotOp op) {
|
|
auto aTy = op.getA().getType().cast<RankedTensorType>();
|
|
auto bTy = op.getB().getType().cast<RankedTensorType>();
|
|
|
|
auto aElemTy = aTy.getElementType();
|
|
auto bElemTy = bTy.getElementType();
|
|
|
|
if (aElemTy != bElemTy)
|
|
return false;
|
|
|
|
auto aShape = aTy.getShape();
|
|
auto bShape = bTy.getShape();
|
|
|
|
assert(aShape[1] == bShape[0]);
|
|
if (!supportMFMAGranularity(aShape[0], bShape[1], aShape[1]))
|
|
return false;
|
|
|
|
return aElemTy.isF16() || aElemTy.isBF16() || aElemTy.isF32() ||
|
|
aElemTy.isInteger(8);
|
|
}
|
|
#endif
|
|
|
|
bool supportMMA(Value value, int version) {
|
|
// Tell whether a DotOp support HMMA by the operand type(either $a or $b).
|
|
// We cannot get both the operand types(in TypeConverter), here we assume the
|
|
// types of both the operands are identical here.
|
|
assert((version == 1 || version == 2) &&
|
|
"Unexpected MMA layout version found");
|
|
|
|
auto elemTy = value.getType().cast<RankedTensorType>().getElementType();
|
|
return elemTy.isF16() || elemTy.isBF16() ||
|
|
(elemTy.isF32() && version >= 2) ||
|
|
(elemTy.isInteger(8) && version >= 2);
|
|
}
|
|
|
|
Type getElementType(Value value) {
|
|
auto type = value.getType();
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>())
|
|
return tensorType.getElementType();
|
|
return type;
|
|
}
|
|
|
|
bool isMmaToDotShortcut(RankedTensorType &srcTy, RankedTensorType &dstTy) {
|
|
// dot_op<opIdx=0, parent=#mma> = #mma
|
|
// when #mma = MmaEncoding<version=2, warpsPerCTA=[..., 1]>
|
|
auto srcLayout = srcTy.getEncoding();
|
|
auto dstLayout = dstTy.getEncoding();
|
|
auto mmaLayout = srcLayout.cast<triton::gpu::MmaEncodingAttr>();
|
|
auto dotOperandLayout = dstLayout.cast<triton::gpu::DotOperandEncodingAttr>();
|
|
return mmaLayout.getVersionMajor() == 2 &&
|
|
mmaLayout.getWarpsPerCTA()[1] == 1 &&
|
|
dotOperandLayout.getOpIdx() == 0 &&
|
|
dotOperandLayout.getParent() == mmaLayout &&
|
|
!srcTy.getElementType().isF32();
|
|
}
|
|
|
|
#ifdef USE_ROCM
|
|
bool isMfmaToDotShortcut(RankedTensorType &srcTy, RankedTensorType &dstTy) {
|
|
auto srcLayout = srcTy.getEncoding();
|
|
auto dstLayout = dstTy.getEncoding();
|
|
auto mfmaLayout = srcLayout.cast<triton::gpu::MfmaEncodingAttr>();
|
|
auto dotOperandLayout = dstLayout.cast<triton::gpu::DotOperandEncodingAttr>();
|
|
// TODO: Remove the restriction on the warpsPerCTA once chain dot testing is
|
|
// improved. In addition, we can enable this shortcut for regular MFMA
|
|
// layout when opIdx == 1.
|
|
return mfmaLayout.getWarpsPerCTA()[1] == 1 &&
|
|
dotOperandLayout.getOpIdx() == 0 &&
|
|
dotOperandLayout.getParent() == mfmaLayout &&
|
|
mfmaLayout.getIsTransposed() && (srcTy.getElementType().isF16() || srcTy.getElementType().isBF16());
|
|
}
|
|
#endif
|
|
|
|
bool isSingleValue(Value value) {
|
|
// Don't consider load as expensive if it is loading a scalar.
|
|
if (auto tensorTy = value.getType().dyn_cast<RankedTensorType>())
|
|
return tensorTy.getNumElements() == 1;
|
|
// TODO: Handle other cases.
|
|
// For example, when ptr is a tensor of single value.
|
|
// It means that ptr is a resultant of broadcast or generated through
|
|
// a chain of broadcast and other operations.
|
|
// Rematerialize it without considering contiguous memory access pattern is
|
|
// fine.
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A data structure similar to SetVector but maintains
|
|
/// a deque instead of a vector to allow for efficient
|
|
/// push_back and pop_front operations.
|
|
/// Using SetVector doesn't suffice our needs because
|
|
/// it only pushes and pops from the back.
|
|
/// For example, if we have a queue like this:
|
|
/// 0->4 1->2->3
|
|
/// ^--------
|
|
/// where 3 depends on 4, once we pop 3, we found
|
|
/// 4 is not ready, so we check 2 and push 3 back
|
|
/// to the queue.
|
|
struct DFSSubgraphState {
|
|
DFSSubgraphState() : set(), deque() {}
|
|
DenseSet<Operation *> set;
|
|
std::deque<Operation *> deque;
|
|
|
|
bool push_back(Operation *op) {
|
|
if (set.insert(op).second) {
|
|
deque.push_back(op);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Operation *pop_front() {
|
|
Operation *op = deque.front();
|
|
deque.pop_front();
|
|
set.erase(op);
|
|
return op;
|
|
}
|
|
|
|
bool empty() { return deque.empty(); }
|
|
};
|
|
|
|
/// DFS post-order implementation that maintains a global count to work across
|
|
/// multiple invocations, to help implement topological sort on multi-root DAGs.
|
|
/// We traverse all operations but only record the ones that appear in
|
|
/// `toSort` for the final result.
|
|
struct DFSState {
|
|
DFSState(const SetVector<Operation *> &set) : toSort(set), seen() {}
|
|
const SetVector<Operation *> &toSort;
|
|
SmallVector<Operation *, 16> topologicalCounts;
|
|
DenseSet<Operation *> seen;
|
|
|
|
/// We mark each op as ready if all its operands are seen. If an op is ready,
|
|
/// we add it to the queue. Otherwise, we keep adding its operands to the
|
|
/// ancestors set.
|
|
void addToReadyQueue(Operation *op, DFSSubgraphState &subGraph,
|
|
SmallVector<Operation *, 4> &readyQueue) {
|
|
bool ready = true;
|
|
for (Value operand : op->getOperands()) {
|
|
auto def = operand.getDefiningOp();
|
|
if (def && !seen.count(def)) {
|
|
subGraph.push_back(def);
|
|
ready = false;
|
|
}
|
|
}
|
|
if (ready)
|
|
readyQueue.push_back(op);
|
|
}
|
|
};
|
|
|
|
void dfsPostorder(Operation *root, DFSState *state) {
|
|
DFSSubgraphState subGraph;
|
|
subGraph.push_back(root);
|
|
SmallVector<Operation *> ops;
|
|
while (!subGraph.empty()) {
|
|
// Nodes in the ready queue are ready to be processed.
|
|
// Meaning that either their operands are all seen or they have null
|
|
// operands.
|
|
SmallVector<Operation *, 4> readyQueue;
|
|
auto *current = subGraph.pop_front();
|
|
state->addToReadyQueue(current, subGraph, readyQueue);
|
|
while (!readyQueue.empty()) {
|
|
Operation *current = readyQueue.pop_back_val();
|
|
if (!state->seen.insert(current).second)
|
|
continue;
|
|
ops.push_back(current);
|
|
for (Value result : current->getResults()) {
|
|
for (Operation *op : result.getUsers())
|
|
state->addToReadyQueue(op, subGraph, readyQueue);
|
|
}
|
|
for (Region ®ion : current->getRegions()) {
|
|
for (Operation &op : region.getOps())
|
|
state->addToReadyQueue(&op, subGraph, readyQueue);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Operation *op : llvm::reverse(ops)) {
|
|
if (state->toSort.count(op) > 0)
|
|
state->topologicalCounts.push_back(op);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SetVector<Operation *>
|
|
multiRootTopologicalSort(const SetVector<Operation *> &toSort) {
|
|
if (toSort.empty()) {
|
|
return toSort;
|
|
}
|
|
|
|
// Run from each root with global count and `seen` set.
|
|
DFSState state(toSort);
|
|
for (auto *s : toSort) {
|
|
assert(toSort.count(s) == 1 && "NYI: multi-sets not supported");
|
|
dfsPostorder(s, &state);
|
|
}
|
|
|
|
// Reorder and return.
|
|
SetVector<Operation *> res;
|
|
for (auto it = state.topologicalCounts.rbegin(),
|
|
eit = state.topologicalCounts.rend();
|
|
it != eit; ++it) {
|
|
res.insert(*it);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SetVector<Operation *> multiRootGetSlice(Operation *op,
|
|
TransitiveFilter backwardFilter,
|
|
TransitiveFilter forwardFilter) {
|
|
SetVector<Operation *> slice;
|
|
slice.insert(op);
|
|
|
|
unsigned currentIndex = 0;
|
|
SetVector<Operation *> backwardSlice;
|
|
SetVector<Operation *> forwardSlice;
|
|
while (currentIndex != slice.size()) {
|
|
auto *currentOp = (slice)[currentIndex];
|
|
// Compute and insert the backwardSlice starting from currentOp.
|
|
backwardSlice.clear();
|
|
getBackwardSlice(currentOp, &backwardSlice, backwardFilter);
|
|
slice.insert(backwardSlice.begin(), backwardSlice.end());
|
|
|
|
// Compute and insert the forwardSlice starting from currentOp.
|
|
forwardSlice.clear();
|
|
getForwardSlice(currentOp, &forwardSlice, forwardFilter);
|
|
slice.insert(forwardSlice.begin(), forwardSlice.end());
|
|
++currentIndex;
|
|
}
|
|
return multiRootTopologicalSort(slice);
|
|
}
|
|
|
|
namespace {
|
|
// Copied from TestDeadCodeAnalysis.cpp, because some dead code analysis
|
|
// interacts with constant propagation, but SparseConstantPropagation
|
|
// doesn't seem to be sufficient.
|
|
class ConstantAnalysis : public DataFlowAnalysis {
|
|
public:
|
|
using DataFlowAnalysis::DataFlowAnalysis;
|
|
|
|
LogicalResult initialize(Operation *top) override {
|
|
WalkResult result = top->walk([&](Operation *op) {
|
|
if (failed(visit(op)))
|
|
return WalkResult::interrupt();
|
|
return WalkResult::advance();
|
|
});
|
|
return success(!result.wasInterrupted());
|
|
}
|
|
|
|
LogicalResult visit(ProgramPoint point) override {
|
|
Operation *op = point.get<Operation *>();
|
|
Attribute value;
|
|
if (matchPattern(op, m_Constant(&value))) {
|
|
auto *constant = getOrCreate<dataflow::Lattice<dataflow::ConstantValue>>(
|
|
op->getResult(0));
|
|
propagateIfChanged(constant, constant->join(dataflow::ConstantValue(
|
|
value, op->getDialect())));
|
|
return success();
|
|
}
|
|
// Dead code analysis requires every operands has initialized ConstantValue
|
|
// state before it is visited.
|
|
// https://github.com/llvm/llvm-project/blob/2ec1aba2b69faa1de5f71832a48e25aa3b5d5314/mlir/lib/Analysis/DataFlow/DeadCodeAnalysis.cpp#L322
|
|
// That's why we need to set all operands to unknown constants.
|
|
setAllToUnknownConstants(op->getResults());
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region.getBlocks())
|
|
setAllToUnknownConstants(block.getArguments());
|
|
}
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
/// Set all given values as not constants.
|
|
void setAllToUnknownConstants(ValueRange values) {
|
|
dataflow::ConstantValue unknownConstant(nullptr, nullptr);
|
|
for (Value value : values) {
|
|
auto *constant =
|
|
getOrCreate<dataflow::Lattice<dataflow::ConstantValue>>(value);
|
|
propagateIfChanged(constant, constant->join(unknownConstant));
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<DataFlowSolver> createDataFlowSolver() {
|
|
auto solver = std::make_unique<DataFlowSolver>();
|
|
solver->load<dataflow::DeadCodeAnalysis>();
|
|
solver->load<ConstantAnalysis>();
|
|
return solver;
|
|
}
|
|
|
|
} // namespace mlir
|