Files
ROCm/docs/how-to/deep-learning-rocm.rst
anisha-amd f4f096b44e Stanford Megatron-LM Compatibility
* Create stanford-megatron-lm-compatibility.rst

* toc and wordlist

* Update deep-learning-rocm.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* fixes and adding to main compat matrix

* formatting fix

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update docs/compatibility/ml-compatibility/stanford-megatron-lm-compatibility.rst

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

* Update stanford-megatron-lm-compatibility.rst

---------

Co-authored-by: Leo Paoletti <164940351+lpaoletti@users.noreply.github.com>
2025-07-15 16:23:50 -04:00

54 lines
2.6 KiB
ReStructuredText

.. meta::
:description: How to install deep learning frameworks for ROCm
:keywords: deep learning, frameworks, ROCm, install, PyTorch, TensorFlow, JAX, MAGMA, DeepSpeed, ML, AI
********************************************
Installing deep learning frameworks for ROCm
********************************************
ROCm provides a comprehensive ecosystem for deep learning development, including
:ref:`libraries <artificial-intelligence-apis>` for optimized deep learning operations and ROCm-aware versions of popular
deep learning frameworks and libraries such as PyTorch, TensorFlow, and JAX. ROCm works closely with these
frameworks to ensure that framework-specific optimizations take advantage of AMD accelerator and GPU architectures.
The following guides provide information on compatibility and supported
features for these ROCm-enabled deep learning frameworks.
* :doc:`PyTorch compatibility <../compatibility/ml-compatibility/pytorch-compatibility>`
* :doc:`TensorFlow compatibility <../compatibility/ml-compatibility/tensorflow-compatibility>`
* :doc:`JAX compatibility <../compatibility/ml-compatibility/jax-compatibility>`
* :doc:`Stanford Megatron-LM compatibility <../compatibility/ml-compatibility/stanford-megatron-lm-compatibility>`
* :doc:`DGL compatibility <../compatibility/ml-compatibility/dgl-compatibility>`
This chart steps through typical installation workflows for installing deep learning frameworks for ROCm.
.. image:: ../data/how-to/framework_install_2024_07_04.png
:alt: Flowchart for installing ROCm-aware machine learning frameworks
:align: center
See the installation instructions to get started.
* :doc:`PyTorch for ROCm <rocm-install-on-linux:install/3rd-party/pytorch-install>`
* :doc:`TensorFlow for ROCm <rocm-install-on-linux:install/3rd-party/tensorflow-install>`
* :doc:`JAX for ROCm <rocm-install-on-linux:install/3rd-party/jax-install>`
* :doc:`Stanford Megatron-LM for ROCm <rocm-install-on-linux:install/3rd-party/stanford-megatron-lm-install>`
* :doc:`DGL for ROCm <rocm-install-on-linux:install/3rd-party/dgl-install>`
.. note::
For guidance on installing ROCm itself, refer to :doc:`ROCm installation for Linux <rocm-install-on-linux:index>`.
Learn how to use your ROCm deep learning environment for training, fine-tuning, inference, and performance optimization
through the following guides.
* :doc:`rocm-for-ai/index`
* :doc:`Training <rocm-for-ai/training/index>`
* :doc:`Fine-tuning LLMs <rocm-for-ai/fine-tuning/index>`
* :doc:`Inference <rocm-for-ai/inference/index>`
* :doc:`Inference optimization <rocm-for-ai/inference-optimization/index>`