Files
ROCm/docs/how-to/rocm-for-ai/training/benchmark-docker/primus-megatron.rst
2025-10-23 14:39:58 -04:00

1013 lines
34 KiB
ReStructuredText

.. meta::
:description: How to train a model using Megatron-LM for ROCm.
:keywords: ROCm, AI, LLM, train, Megatron-LM, megatron, Llama, tutorial, docker, torch
********************************************
Training a model with Primus and Megatron-LM
********************************************
`Primus <https://github.com/AMD-AGI/Primus>`__ is a unified and flexible
training framework for AMD Instinct GPUs designed to support multiple training
engine backends -- including Megatron -- to deliver scalable, high-performance
model training. Performance acceleration is powered by `Primus Turbo
<https://github.com/AMD-AGI/Primus-Turbo>`__ and ROCm libraries.
.. note::
For a unified training solution on AMD GPUs with ROCm, the `rocm/megatron-lm
<https://hub.docker.com/r/rocm/megatron-lm/>`__ Docker Hub registry will be
deprecated soon in favor of `rocm/primus <https://hub.docker.com/r/rocm/primus>`__.
The ``rocm/primus`` Docker containers will cover PyTorch training ecosystem frameworks,
including Megatron-LM and :doc:`torchtitan <primus-pytorch>`.
Primus with Megatron is designed to replace the :doc:`ROCm Megatron-LM
training <megatron-lm>` workflow. To learn how to migrate workloads from
Megatron-LM to Primus with Megatron, see
:doc:`previous-versions/megatron-lm-primus-migration-guide`.
AMD provides a ready-to-use Docker images for MI355X, MI350X,
MI325X, and MI300X GPUs containing essential components for Primus, ROCm, and
Megatron-LM.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. list-table::
:header-rows: 1
* - Software component
- Version
{% for component_name, component_version in docker.components.items() %}
* - {{ component_name }}
- {{ component_version }}
{% endfor %}
{% endfor %}
.. _amd-primus-megatron-lm-model-support-v259:
Supported models
================
The following models are pre-optimized for performance on AMD Instinct GPUs.
Some instructions, commands, and training examples in this documentation
might vary by model -- select one to get started.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set model_groups = data.model_groups %}
.. raw:: html
<div id="vllm-benchmark-ud-params-picker" class="container-fluid">
<div class="row gx-0">
<div class="col-2 me-1 px-2 model-param-head">Model</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
<div class="col-3 px-2 model-param" data-param-k="model-group" data-param-v="{{ model_group.tag }}" tabindex="0">{{ model_group.group }}</div>
{% endfor %}
</div>
</div>
<div class="row gx-0 pt-1">
<div class="col-2 me-1 px-2 model-param-head">Variant</div>
<div class="row col-10 pe-0">
{% for model_group in model_groups %}
{% set models = model_group.models %}
{% for model in models %}
{% if models|length % 3 == 0 %}
<div class="col-4 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% else %}
<div class="col-6 px-2 model-param" data-param-k="model" data-param-v="{{ model.mad_tag }}" data-param-group="{{ model_group.tag }}" tabindex="0">{{ model.model }}</div>
{% endif %}
{% endfor %}
{% endfor %}
</div>
</div>
</div>
.. note::
Some models, such as Llama, require an external license agreement through
a third party (for example, Meta).
System validation
=================
Before running AI workloads, it's important to validate that your AMD hardware is configured
correctly and performing optimally.
If you have already validated your system settings, including aspects like NUMA auto-balancing, you
can skip this step. Otherwise, complete the procedures in the :ref:`System validation and
optimization <rocm-for-ai-system-optimization>` guide to properly configure your system settings
before starting training.
To test for optimal performance, consult the recommended :ref:`System health benchmarks
<rocm-for-ai-system-health-bench>`. This suite of tests will help you verify and fine-tune your
system's configuration.
.. _mi300x-amd-primus-megatron-lm-training-v259:
Environment setup
=================
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
Use the following instructions to set up the environment, configure the script to train models, and
reproduce the benchmark results on AMD Instinct GPUs.
.. _amd-primus-megatron-lm-requirements-v259:
Pull the Docker image
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker pull {{ docker.pull_tag }}
{% endfor %}
2. Launch the Docker container.
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
docker run -it \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--network host --ipc host \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME:$HOME \
--shm-size 128G \
--name primus_training_env \
{{ docker.pull_tag }}
{% endfor %}
3. Use these commands if you exit the ``primus_training_env`` container and need to return to it.
.. code-block:: shell
docker start primus_training_env
docker exec -it primus_training_env bash
The Docker container hosts verified commit ``e16b27b`` of the `Primus
<https://github.com/AMD-AGI/Primus/tree/e16b27b>`__ repository.
.. _amd-primus-megatron-lm-environment-setup-v259:
Configuration
=============
Primus defines a training configuration in YAML for each model in
`examples/megatron/configs <https://github.com/AMD-AGI/Primus/tree/e16b27bf6c1b2798f38848fc574fee60d9a9b902/examples/megatron/configs>`__.
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set model_groups = data.model_groups %}
{% for model_group in model_groups %}
{% for model in model_group.models %}
.. container:: model-doc {{ model.mad_tag }}
For example, to update training parameters for {{ model.model }}, you can
update ``examples/megatron/configs/{{ model.config_name }}``. Training
configuration YAML files for other models follow this naming convention.
{% endfor %}
{% endfor %}
.. note::
See :ref:`Key options <amd-primus-megatron-lm-benchmark-test-vars>` for more information on configuration options.
Dataset options
---------------
You can use either mock data or real data for training.
* Mock data can be useful for testing and validation. Use the ``mock_data`` field to toggle between mock and real data. The default
value is ``true`` for enabled.
.. code-block:: yaml
mock_data: true
* If you're using a real dataset, update the ``train_data_path`` field to point to the location of your dataset.
.. code-block:: bash
mock_data: false
train_data_path: /path/to/your/dataset
Ensure that the files are accessible inside the Docker container.
.. _amd-primus-megatron-lm-tokenizer-v259:
Tokenizer
---------
Set the ``HF_TOKEN`` environment variable with
right permissions to access the tokenizer for each model.
.. code-block:: bash
# Export your HF_TOKEN in the workspace
export HF_TOKEN=<your_hftoken>
.. note::
In Primus, each model uses a tokenizer from Hugging Face. For example, Llama
3.1 8B model uses ``tokenizer_model: meta-llama/Llama-3.1-8B`` and
``tokenizer_type: Llama3Tokenizer`` defined in the `llama3.1-8B model
<https://github.com/AMD-AGI/Primus/blob/e16b27bf6c1b2798f38848fc574fee60d9a9b902/examples/megatron/configs/llama3.1_8B-pretrain.yaml>`__
definition.
.. _amd-primus-megatron-lm-run-training-v259:
Run training
============
Use the following example commands to set up the environment, configure
:ref:`key options <amd-primus-megatron-lm-benchmark-test-vars>`, and run training on
AMD Instinct GPUs using Primus with the Megatron backend.
Single node training
--------------------
To run training on a single node, navigate to ``/workspace/Primus`` and use the following setup command:
.. code-block:: shell
pip install -r requirements.txt
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.3-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.3 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run pre-training for Llama 3.3 70B BF16, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 6 \
--global_batch_size 48 \
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 2 \
--global_batch_size 16
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 8B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run pre-training for Llama 3.1 8B FP8, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--micro_batch_size 4 \
--global_batch_size 512 \
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
For Llama 3.1 8B BF16, use the following command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 512 \
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run pre-training for Llama 3.1 70B BF16, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 32
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
To run the training on a single node for Llama 3.1 70B FP8, use the following command.
.. note::
The MI300X configuration uses a proxy model. On MI300X GPUs, use two or more nodes
to run the full Llama 3.1 70B model with FP8 precision. MI355X and MI350X GPUs
can support the full 70B model with FP8 precision on a single node.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--no_fp8_weight_transpose_cache true \
--micro_batch_size 3 \
--global_batch_size 24
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 40 \
--fp8 hybrid \
--no_fp8_weight_transpose_cache true
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run pre-training for Llama 2 7B FP8, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid \
--micro_batch_size 13 \
--global_batch_size 416
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
To run pre-training for Llama 2 7B BF16, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 10 \
--global_batch_size 640
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run pre-training for Llama 2 70B BF16, run:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 17 \
--global_batch_size 272
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_pretrain.sh \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v3-proxy
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V3.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run training on a single node for DeepSeek-V3 (MoE with expert parallel) BF16 with 3-layer proxy,
use the following command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v3-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 3 \
--moe_layer_freq 1 \
--train_iters 50 \
--micro_batch_size 8 \
--global_batch_size 64
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v3-pretrain.yaml \
bash examples/run_pretrain.sh \
--num_layers 3 \
--moe_layer_freq 1 \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_deepseek-v2-lite-16b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to DeepSeek-V2-Lite.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run training on a single node for DeepSeek-V2-Lite (MoE with expert parallel) BF16,
use the following command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v2_lite-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 12 \
--global_batch_size 768
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/deepseek_v2_lite-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--global_batch_size 256
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run training on a single node for Mixtral 8x7B (MoE with expert parallel),
use the following command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 4 \
--global_batch_size 256
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x22b-proxy
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Mixtral 8x22B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run training on a single node for Mixtral 8x22B BF16 (MoE with expert parallel) 4-layer proxy,
use the following command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x22B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 4 \
--pipeline_model_parallel_size 1 \
--micro_batch_size 2 \
--global_batch_size 16
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/mixtral_8x22B_v0.1-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--num_layers 4 \
--pipeline_model_parallel_size 1 \
--micro_batch_size 1 \
--global_batch_size 16
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run training on a single node for Qwen 2.5 7B BF16, use the following
command:
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 16 \
--global_batch_size 768
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
For FP8, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
--micro_batch_size 20 \
--global_batch_size 800
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_7B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Qwen 2.5 72B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To run the training on a single node for Qwen 2.5 72B BF16, use the following command.
.. tab-set::
.. tab-item:: MI355X and MI350X
:sync: MI355X and MI350X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50 \
--micro_batch_size 16 \
--global_batch_size 256
.. tab-item:: MI300X
:sync: MI325X and MI300X
.. code-block:: shell
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_pretrain.sh \
--train_iters 50
.. _amd-primus-megatron-multi-node-examples-v259:
Multi-node training examples
----------------------------
Refer to :doc:`/how-to/rocm-for-ai/system-setup/multi-node-setup` to configure your environment for multi-node
training.
To run training on multiple nodes, you can use the
`run_slurm_pretrain.sh <https://github.com/AMD-AGI/Primus/blob/main/examples/run_slurm_pretrain.sh>`__
to launch the multi-node workload. Use the following steps to setup your environment:
.. datatemplate:yaml:: /data/how-to/rocm-for-ai/training/primus-megatron-benchmark-models.yaml
{% set dockers = data.dockers %}
.. tab-set::
{% for supported_gpus, docker in dockers.items() %}
.. tab-item:: {{ supported_gpus }}
:sync: {{ supported_gpus }}
.. code-block:: shell
git clone --recurse-submodules https://github.com/AMD-AGI/Primus.git
cd Primus
git checkout e16b27b
export DOCKER_IMAGE={{ docker.pull_tag }}
export HF_TOKEN=<your_HF_token>
export HSA_NO_SCRATCH_RECLAIM=1
export NVTE_CK_USES_BWD_V3=1
export NCCL_IB_HCA=<your_NCCL_IB_HCA> # specify which RDMA interfaces to use for communication
export NCCL_SOCKET_IFNAME=<your_NCCL_SOCKET_IFNAME> # your Network Interface
export GLOO_SOCKET_IFNAME=<your_GLOO_SOCKET_IFNAME> # your Network Interface
export NCCL_IB_GID_INDEX=3 # Set InfiniBand GID index for NCCL communication. Default is 3 for ROCE
{% endfor %}
.. note::
* Make sure correct network drivers are installed on the nodes. If inside a Docker, either install the drivers inside the Docker container or pass the network drivers from the host while creating Docker container.
* If ``NCCL_IB_HCA`` and ``NCCL_SOCKET_IFNAME`` are not set, Primus will try to auto-detect. However, since NICs can vary accross different cluster, it is encouraged to explicitly export your NCCL parameters for the cluster.
* To find your network interface, you can use ``ip a``.
* To find RDMA interfaces, you can use ``ibv_devices`` to get the list of all the RDMA/IB devices.
* Remember to set ``DOCKER_IMAGE`` and ``HF_TOKEN`` (see :ref:`amd-primus-megatron-lm-tokenizer-v259`) as appropriate.
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-8b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 8B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Llama 3.1 8B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_8B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 1024 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 7B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Llama 2 7B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama2_7B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--global_batch_size 2048 \
--fp8 hybrid
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.1-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.1 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Llama 3.1 70B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.1 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama3.1_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_llama-2-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Llama 2 70B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case.
NNODES=8 \
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 10 \
--global_batch_size 640 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 2 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama2_70B-pretrain.yaml \
bash ./examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 1536 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_llama-3.3-70b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 3.3 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Llama 3.3 70B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 4 \
--global_batch_size 256 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
To train Llama 3.3 70B BF16 on 8 nodes, run:
.. code-block:: shell
NNODES=8 \
EXP=examples/megatron/configs/llama3.3_70B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 1 \
--global_batch_size 256 \
--recompute_num_layers 12
.. container:: model-doc primus_pyt_megatron_lm_train_mixtral-8x7b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Mixtral 8x7B BF16 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/mixtral_8x7B_v0.1-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 2 \
--global_batch_size 256
.. container:: model-doc primus_pyt_megatron_lm_train_qwen2.5-72b
Once setup is complete, run the appropriate training command.
The following run commands are tailored to Llama 2 70B.
See :ref:`amd-primus-megatron-lm-model-support-v259` to switch to another available model.
To train Qwen2.5 72B FP8 on 8 nodes, run:
.. code-block:: shell
# Adjust the training parameters.
# For example, `global_batch_size: 8 * #single_node_bs` for 8 nodes in this case
NNODES=8 \
EXP=examples/megatron/configs/qwen2.5_72B-pretrain.yaml \
bash examples/run_slurm_pretrain.sh \
--micro_batch_size 8 \
--global_batch_size 512 \
--recompute_num_layers 80 \
--no_fp8_weight_transpose_cache true \
--fp8 hybrid
.. _amd-primus-megatron-lm-benchmark-test-vars-v259:
Key options
-----------
The following are key options to take note of
fp8
``hybrid`` enables FP8 GEMMs.
use_torch_fsdp2
``use_torch_fsdp2: 1`` enables torch fsdp-v2. If FSDP is enabled,
set ``use_distributed_optimizer`` and ``overlap_param_gather`` to ``false``.
profile
To enable PyTorch profiling, set these parameters:
.. code-block:: yaml
profile: true
use_pytorch_profiler: true
profile_step_end: 7
profile_step_start: 6
train_iters
The total number of iterations (default: 50).
mock_data
True by default.
micro_batch_size
Micro batch size.
global_batch_size
Global batch size.
recompute_granularity
For activation checkpointing.
num_layers
For using a reduced number of layers as with proxy models.
Known issues
============
PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.
Further reading
===============
- For an introduction to Primus, see `Primus: A Lightweight, Unified Training
Framework for Large Models on AMD GPUs <https://rocm.blogs.amd.com/software-tools-optimization/primus/README.html>`__.
- To learn more about system settings and management practices to configure your system for
AMD Instinct MI300X Series GPUs, see `AMD Instinct MI300X system optimization <https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300x.html>`_.
- For a list of other ready-made Docker images for AI with ROCm, see
`AMD Infinity Hub <https://www.amd.com/en/developer/resources/infinity-hub.html#f-amd_hub_category=AI%20%26%20ML%20Models>`_.
Previous versions
=================
See :doc:`previous-versions/megatron-lm-history` to find documentation for previous releases
of the ``ROCm/megatron-lm`` Docker image.
This training environment now uses Primus with Megatron as the primary
configuration. Limited support for the legacy ROCm Megatron-LM is still
available; see the :doc:`megatron-lm` documentation.