Fix for migration

Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
This commit is contained in:
pdhirajkumarprasad
2025-11-24 15:27:20 +05:30
parent fe03539901
commit 7a8c6e3bb8
16 changed files with 39 additions and 39 deletions

View File

@@ -10,7 +10,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Don't run this in everyone's forks. # Don't run this in everyone's forks.
if: github.repository == 'nod-ai/AMDSHARK' if: github.repository == 'nod-ai/AMD-SHARK-Studio'
steps: steps:
- name: Checking out repository - name: Checking out repository
@@ -18,7 +18,7 @@ jobs:
with: with:
token: ${{ secrets.NODAI_INVOCATION_TOKEN }} token: ${{ secrets.NODAI_INVOCATION_TOKEN }}
- name: Run scrape releases script - name: Run scrape releases script
run: python ./build_tools/scrape_releases.py nod-ai AMDSHARK > /tmp/index.html run: python ./build_tools/scrape_releases.py nod-ai AMD-SHARK-Studio > /tmp/index.html
shell: bash shell: bash
- run: git fetch --all - run: git fetch --all
- run: git switch github-pages - run: git switch github-pages

2
.gitmodules vendored
View File

@@ -1,4 +1,4 @@
[submodule "inference/thirdparty/amdshark-runtime"] [submodule "inference/thirdparty/amdshark-runtime"]
path = inference/thirdparty/amdshark-runtime path = inference/thirdparty/amdshark-runtime
url =https://github.com/nod-ai/SRT.git url =https://github.com/nod-ai/SRT.git
branch = amdshark-06032022 branch = shark-06032022

View File

@@ -6,7 +6,7 @@ High Performance Machine Learning Distribution
*The latest versions of this project are developments towards a refactor on top of IREE-Turbine. Until further notice, make sure you use an .exe release or a checkout of the `AMDSHARK-1.0` branch, for a working AMDSHARK-Studio* *The latest versions of this project are developments towards a refactor on top of IREE-Turbine. Until further notice, make sure you use an .exe release or a checkout of the `AMDSHARK-1.0` branch, for a working AMDSHARK-Studio*
[![Nightly Release](https://github.com/nod-ai/AMDSHARK-Studio/actions/workflows/nightly.yml/badge.svg)](https://github.com/nod-ai/AMDSHARK-Studio/actions/workflows/nightly.yml) [![Nightly Release](https://github.com/nod-ai/AMD-SHARK-Studio/actions/workflows/nightly.yml/badge.svg)](https://github.com/nod-ai/AMD-SHARK-Studio/actions/workflows/nightly.yml)
<details> <details>
<summary>Prerequisites - Drivers </summary> <summary>Prerequisites - Drivers </summary>
@@ -27,9 +27,9 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
### Quick Start for AMDSHARK Stable Diffusion for Windows 10/11 Users ### Quick Start for AMDSHARK Stable Diffusion for Windows 10/11 Users
Install the Driver from [Prerequisites](https://github.com/nod-ai/AMDSHARK-Studio#install-your-hardware-drivers) above Install the Driver from [Prerequisites](https://github.com/nod-ai/AMD-SHARK-Studio#install-your-hardware-drivers) above
Download the [stable release](https://github.com/nod-ai/AMDSHARK-Studio/releases/latest) or the most recent [AMDSHARK 1.0 pre-release](https://github.com/nod-ai/AMDSHARK-Studio/releases). Download the [stable release](https://github.com/nod-ai/AMD-SHARK-Studio/releases/latest) or the most recent [AMDSHARK 1.0 pre-release](https://github.com/nod-ai/AMD-SHARK-Studio/releases).
Double click the .exe, or [run from the command line](#running) (recommended), and you should have the [UI](http://localhost:8080/) in the browser. Double click the .exe, or [run from the command line](#running) (recommended), and you should have the [UI](http://localhost:8080/) in the browser.
@@ -67,8 +67,8 @@ Enjoy.
## Check out the code ## Check out the code
```shell ```shell
git clone https://github.com/nod-ai/AMDSHARK.git git clone https://github.com/nod-ai/AMD-SHARK-Studio.git
cd AMDSHARK cd AMD-SHARK-Studio
``` ```
## Switch to the Correct Branch (IMPORTANT!) ## Switch to the Correct Branch (IMPORTANT!)
@@ -179,12 +179,12 @@ python -m pip install --upgrade pip
*macOS Metal* users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install" *macOS Metal* users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install"
### Install AMDSHARK ### Install AMD-SHARK
This step pip installs AMDSHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11 This step pip installs AMD-SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
```shell ```shell
pip install nodai-amdshark -f https://nod-ai.github.io/AMDSHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu pip install nodai-amdshark -f https://nod-ai.github.io/AMD-SHARK-Studio/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
``` ```
### Run amdshark tank model tests. ### Run amdshark tank model tests.
@@ -196,7 +196,7 @@ See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.
### Download and run Resnet50 sample ### Download and run Resnet50 sample
```shell ```shell
curl -O https://raw.githubusercontent.com/nod-ai/AMDSHARK/main/amdshark/examples/amdshark_inference/resnet50_script.py curl -O https://raw.githubusercontent.com/nod-ai/AMD-SHARK-Studio/main/amdshark/examples/amdshark_inference/resnet50_script.py
#Install deps for test script #Install deps for test script
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
@@ -204,7 +204,7 @@ python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
### Download and run BERT (MiniLM) sample ### Download and run BERT (MiniLM) sample
```shell ```shell
curl -O https://raw.githubusercontent.com/nod-ai/AMDSHARK/main/amdshark/examples/amdshark_inference/minilm_jit.py curl -O https://raw.githubusercontent.com/nod-ai/AMD-SHARK-Studio/main/amdshark/examples/amdshark_inference/minilm_jit.py
#Install deps for test script #Install deps for test script
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
@@ -358,12 +358,12 @@ AMDSHARK is maintained to support the latest innovations in ML Models:
| Vision Transformer | :green_heart: | :green_heart: | :green_heart: | | Vision Transformer | :green_heart: | :green_heart: | :green_heart: |
| ResNet50 | :green_heart: | :green_heart: | :green_heart: | | ResNet50 | :green_heart: | :green_heart: | :green_heart: |
For a complete list of the models supported in AMDSHARK, please refer to [tank/README.md](https://github.com/nod-ai/AMDSHARK-Studio/blob/main/tank/README.md). For a complete list of the models supported in AMDSHARK, please refer to [tank/README.md](https://github.com/nod-ai/AMD-SHARK-Studio/blob/main/tank/README.md).
## Communication Channels ## Communication Channels
* [AMDSHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the AMDSHARK team and other users * [AMDSHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the AMDSHARK team and other users
* [GitHub issues](https://github.com/nod-ai/AMDSHARK-Studio/issues): Feature requests, bugs etc * [GitHub issues](https://github.com/nod-ai/AMD-SHARK-Studio/issues): Feature requests, bugs etc
## Related Projects ## Related Projects

View File

@@ -14,7 +14,7 @@ def amdshark(model, inputs, *, options):
log.exception( log.exception(
"Unable to import AMDSHARK - High Performance Machine Learning Distribution" "Unable to import AMDSHARK - High Performance Machine Learning Distribution"
"Please install the right version of AMDSHARK that matches the PyTorch version being used. " "Please install the right version of AMDSHARK that matches the PyTorch version being used. "
"Refer to https://github.com/nod-ai/AMDSHARK-Studio/ for details." "Refer to https://github.com/nod-ai/AMD-SHARK-Studio/ for details."
) )
raise raise
return AMDSharkBackend(model, inputs, options) return AMDSharkBackend(model, inputs, options)

View File

@@ -23,7 +23,7 @@ pip install accelerate transformers ftfy
Please cherry-pick this branch of torch-mlir: https://github.com/vivekkhandelwal1/torch-mlir/tree/sd-ops Please cherry-pick this branch of torch-mlir: https://github.com/vivekkhandelwal1/torch-mlir/tree/sd-ops
and build it locally. You can find the instructions for using locally build Torch-MLIR, and build it locally. You can find the instructions for using locally build Torch-MLIR,
here: https://github.com/nod-ai/AMDSHARK-Studio#how-to-use-your-locally-built-iree--torch-mlir-with-amdshark here: https://github.com/nod-ai/AMD-SHARK-Studio#how-to-use-your-locally-built-iree--torch-mlir-with-amdshark
## Run the Stable diffusion fine tuning ## Run the Stable diffusion fine tuning

View File

@@ -157,7 +157,7 @@ def device_driver_info(device):
f"Required drivers for {device} not found. {device_driver_err_map[device]['debug']} " f"Required drivers for {device} not found. {device_driver_err_map[device]['debug']} "
f"Please install the required drivers{device_driver_err_map[device]['solution']} " f"Please install the required drivers{device_driver_err_map[device]['solution']} "
f"For further assistance please reach out to the community on discord [https://discord.com/invite/RUqY2h2s9u]" f"For further assistance please reach out to the community on discord [https://discord.com/invite/RUqY2h2s9u]"
f" and/or file a bug at https://github.com/nod-ai/AMDSHARK-Studio/issues" f" and/or file a bug at https://github.com/nod-ai/AMD-SHARK-Studio/issues"
) )
return err_msg return err_msg
else: else:

View File

@@ -192,7 +192,7 @@ def get_rocm_target_chip(device_str):
if key in device_str: if key in device_str:
return rocm_chip_map[key] return rocm_chip_map[key]
raise AssertionError( raise AssertionError(
f"Device {device_str} not recognized. Please file an issue at https://github.com/nod-ai/AMDSHARK-Studio/issues." f"Device {device_str} not recognized. Please file an issue at https://github.com/nod-ai/AMD-SHARK-Studio/issues."
) )

View File

@@ -1,9 +1,9 @@
# Overview # Overview
This document is intended to provide a starting point for profiling with AMDSHARK/IREE. At it's core This document is intended to provide a starting point for profiling with AMDSHARK/IREE. At it's core
[AMDSHARK](https://github.com/nod-ai/AMDSHARK-Studio/tree/main/tank) is a python API that links the MLIR lowerings from various [AMDSHARK](https://github.com/nod-ai/AMD-SHARK-Studio/tree/main/tank) is a python API that links the MLIR lowerings from various
frameworks + frontends (e.g. PyTorch -> Torch-MLIR) with the compiler + runtime offered by IREE. More information frameworks + frontends (e.g. PyTorch -> Torch-MLIR) with the compiler + runtime offered by IREE. More information
on model coverage and framework support can be found [here](https://github.com/nod-ai/AMDSHARK-Studio/tree/main/tank). The intended on model coverage and framework support can be found [here](https://github.com/nod-ai/AMD-SHARK-Studio/tree/main/tank). The intended
use case for AMDSHARK is for compilation and deployment of performant state of the art AI models. use case for AMDSHARK is for compilation and deployment of performant state of the art AI models.
![image](https://user-images.githubusercontent.com/22101546/217151219-9bb184a3-cfb9-4788-bb7e-5b502953525c.png) ![image](https://user-images.githubusercontent.com/22101546/217151219-9bb184a3-cfb9-4788-bb7e-5b502953525c.png)

View File

@@ -6,7 +6,7 @@ We currently make use of the [AI-Render Plugin](https://github.com/benrugg/AI-Re
## Setup AMDSHARK and prerequisites: ## Setup AMDSHARK and prerequisites:
* Download the latest AMDSHARK SD webui .exe from [here](https://github.com/nod-ai/AMDSHARK-Studio/releases) or follow instructions on the [README](https://github.com/nod-ai/AMDSHARK-Studio#readme) * Download the latest AMDSHARK SD webui .exe from [here](https://github.com/nod-ai/AMD-SHARK-Studio/releases) or follow instructions on the [README](https://github.com/nod-ai/AMD-SHARK-Studio#readme)
* Once you have the .exe where you would like AMDSHARK to install, run the .exe from terminal/PowerShell with the `--api` flag: * Once you have the .exe where you would like AMDSHARK to install, run the .exe from terminal/PowerShell with the `--api` flag:
``` ```
## Run the .exe in API mode: ## Run the .exe in API mode:

View File

@@ -20,8 +20,8 @@ This does mean however, that on a brand new fresh install of AMDSHARK that has n
## Setup AMDSHARK and prerequisites: ## Setup AMDSHARK and prerequisites:
* Make sure you have suitable drivers for your graphics card installed. See the prerequisties section of the [README](https://github.com/nod-ai/AMDSHARK-Studio#readme). * Make sure you have suitable drivers for your graphics card installed. See the prerequisties section of the [README](https://github.com/nod-ai/AMD-SHARK-Studio#readme).
* Download the latest AMDSHARK studio .exe from [here](https://github.com/nod-ai/AMDSHARK-Studio/releases) or follow the instructions in the [README](https://github.com/nod-ai/AMDSHARK-Studio#readme) for an advanced, Linux or Mac install. * Download the latest AMDSHARK studio .exe from [here](https://github.com/nod-ai/AMD-SHARK-Studio/releases) or follow the instructions in the [README](https://github.com/nod-ai/AMD-SHARK-Studio#readme) for an advanced, Linux or Mac install.
* Run AMDSHARK from terminal/PowerShell with the `--api` flag. Since koboldcpp also expects both CORS support and the image generator to be running on port `7860` rather than AMDSHARK default of `8080`, also include both the `--api_accept_origin` flag with a suitable origin (use `="*"` to enable all origins) and `--server_port=7860` on the command line. (See the if you want to run AMDSHARK on a different port) * Run AMDSHARK from terminal/PowerShell with the `--api` flag. Since koboldcpp also expects both CORS support and the image generator to be running on port `7860` rather than AMDSHARK default of `8080`, also include both the `--api_accept_origin` flag with a suitable origin (use `="*"` to enable all origins) and `--server_port=7860` on the command line. (See the if you want to run AMDSHARK on a different port)
```powershell ```powershell

View File

@@ -8,7 +8,7 @@ wheel
torch==2.3.0 torch==2.3.0
iree-turbine @ git+https://github.com/iree-org/iree-turbine.git@main iree-turbine @ git+https://github.com/iree-org/iree-turbine.git@main
turbine-models @ git+https://github.com/nod-ai/AMDSHARK-ModelDev.git@main#subdirectory=models turbine-models @ git+https://github.com/nod-ai/AMD-SHARK-ModelDev.git@main#subdirectory=models
diffusers @ git+https://github.com/nod-ai/diffusers@0.29.0.dev0-amdshark diffusers @ git+https://github.com/nod-ai/diffusers@0.29.0.dev0-amdshark
brevitas @ git+https://github.com/Xilinx/brevitas.git@6695e8df7f6a2c7715b9ed69c4b78157376bb60b brevitas @ git+https://github.com/Xilinx/brevitas.git@6695e8df7f6a2c7715b9ed69c4b78157376bb60b

View File

@@ -20,8 +20,8 @@ setup(
long_description=long_description, long_description=long_description,
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
project_urls={ project_urls={
"Code": "https://github.com/nod-ai/AMDSHARK", "Code": "https://github.com/nod-ai/AMD-SHARK-Studio",
"Bug Tracker": "https://github.com/nod-ai/AMDSHARK-Studio/issues", "Bug Tracker": "https://github.com/nod-ai/AMD-SHARK-Studio/issues",
}, },
classifiers=[ classifiers=[
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",

View File

@@ -142,7 +142,7 @@ For more information refer to [MODEL TRACKING SHEET](https://docs.google.com/spr
### Run all model tests on CPU/GPU/VULKAN/Metal ### Run all model tests on CPU/GPU/VULKAN/Metal
For a list of models included in our pytest model suite, see https://github.com/nod-ai/AMDSHARK-Studio/blob/main/tank/all_models.csv For a list of models included in our pytest model suite, see https://github.com/nod-ai/AMD-SHARK-Studio/blob/main/tank/all_models.csv
```shell ```shell
pytest tank/test_models.py pytest tank/test_models.py

View File

@@ -1,19 +1,19 @@
bert-base-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"","" bert-base-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
bert-large-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"","" bert-large-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"Fails during iree-compile.","" facebook/deit-small-distilled-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"Fails during iree-compile.",""
google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMDSHARK/issues/311","" google/vit-base-patch16-224,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/311",""
microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"https://github.com/nod-ai/AMDSHARK/issues/390","macos" microsoft/beit-base-patch16-224-pt22k-ft22k,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/390","macos"
microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"","" microsoft/MiniLM-L12-H384-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"",""
google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"https://github.com/nod-ai/AMDSHARK/issues/344","macos" google/mobilebert-uncased,linalg,torch,1e-2,1e-3,default,None,False,False,False,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/344","macos"
mobilenet_v3_small,linalg,torch,1e-1,1e-2,default,nhcw-nhwc,False,False,False,"https://github.com/nod-ai/AMDSHARK/issues/388, https://github.com/nod-ai/AMDSHARK/issues/1487","macos" mobilenet_v3_small,linalg,torch,1e-1,1e-2,default,nhcw-nhwc,False,False,False,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/388, https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487","macos"
nvidia/mit-b0,linalg,torch,1e-2,1e-3,default,None,True,True,True,"https://github.com/nod-ai/AMDSHARK/issues/343,https://github.com/nod-ai/AMDSHARK/issues/1487","macos" nvidia/mit-b0,linalg,torch,1e-2,1e-3,default,None,True,True,True,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/343,https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487","macos"
resnet101,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,True,True,True,"","macos" resnet101,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,True,True,True,"","macos"
resnet18,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos" resnet18,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos"
resnet50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos" resnet50,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
squeezenet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos" squeezenet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
wide_resnet50_2,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,True,True,True,"","macos" wide_resnet50_2,linalg,torch,1e-2,1e-3,default,nhcw-nhwc/img2col,True,True,True,"","macos"
mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos" mnasnet1_0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,False,False,False,"","macos"
efficientnet_b0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMDSHARK/issues/1487","macos" efficientnet_b0,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487","macos"
efficientnet_b7,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMDSHARK/issues/1487","macos" efficientnet_b7,linalg,torch,1e-2,1e-3,default,nhcw-nhwc,True,True,True,"https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487","macos"
t5-base,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos" t5-base,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos"
t5-large,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos" t5-large,linalg,torch,1e-2,1e-3,default,None,True,True,True,"","macos"
1 bert-base-uncased linalg torch 1e-2 1e-3 default None False False False
2 bert-large-uncased linalg torch 1e-2 1e-3 default None False False False
3 facebook/deit-small-distilled-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False Fails during iree-compile.
4 google/vit-base-patch16-224 linalg torch 1e-2 1e-3 default nhcw-nhwc True True True https://github.com/nod-ai/AMDSHARK/issues/311 https://github.com/nod-ai/AMD-SHARK-Studio/issues/311
5 microsoft/beit-base-patch16-224-pt22k-ft22k linalg torch 1e-2 1e-3 default nhcw-nhwc False False False https://github.com/nod-ai/AMDSHARK/issues/390 https://github.com/nod-ai/AMD-SHARK-Studio/issues/390 macos
6 microsoft/MiniLM-L12-H384-uncased linalg torch 1e-2 1e-3 default None False False False
7 google/mobilebert-uncased linalg torch 1e-2 1e-3 default None False False False https://github.com/nod-ai/AMDSHARK/issues/344 https://github.com/nod-ai/AMD-SHARK-Studio/issues/344 macos
8 mobilenet_v3_small linalg torch 1e-1 1e-2 default nhcw-nhwc False False False https://github.com/nod-ai/AMDSHARK/issues/388, https://github.com/nod-ai/AMDSHARK/issues/1487 https://github.com/nod-ai/AMD-SHARK-Studio/issues/388, https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487 macos
9 nvidia/mit-b0 linalg torch 1e-2 1e-3 default None True True True https://github.com/nod-ai/AMDSHARK/issues/343,https://github.com/nod-ai/AMDSHARK/issues/1487 https://github.com/nod-ai/AMD-SHARK-Studio/issues/343,https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487 macos
10 resnet101 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col True True True macos
11 resnet18 linalg torch 1e-2 1e-3 default None True True True macos
12 resnet50 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False macos
13 squeezenet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False macos
14 wide_resnet50_2 linalg torch 1e-2 1e-3 default nhcw-nhwc/img2col True True True macos
15 mnasnet1_0 linalg torch 1e-2 1e-3 default nhcw-nhwc False False False macos
16 efficientnet_b0 linalg torch 1e-2 1e-3 default nhcw-nhwc True True True https://github.com/nod-ai/AMDSHARK/issues/1487 https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487 macos
17 efficientnet_b7 linalg torch 1e-2 1e-3 default nhcw-nhwc True True True https://github.com/nod-ai/AMDSHARK/issues/1487 https://github.com/nod-ai/AMD-SHARK-Studio/issues/1487 macos
18 t5-base linalg torch 1e-2 1e-3 default None True True True macos
19 t5-large linalg torch 1e-2 1e-3 default None True True True macos

View File

@@ -1,5 +1,5 @@
# Lint as: python3 # Lint as: python3
"""AMDSHARK Tank""" """AMD-SHARK Tank"""
# python generate_amdsharktank.py, you have to give a csv tile with [model_name, model_download_url] # python generate_amdsharktank.py, you have to give a csv tile with [model_name, model_download_url]
# will generate local amdshark tank folder like this: # will generate local amdshark tank folder like this:
# /AMDSHARK # /AMDSHARK
@@ -191,7 +191,7 @@ if __name__ == "__main__":
# type=lambda x: is_valid_file(x), # type=lambda x: is_valid_file(x),
# default="./tank/torch_model_list.csv", # default="./tank/torch_model_list.csv",
# help="""Contains the file with torch_model name and args. # help="""Contains the file with torch_model name and args.
# Please see: https://github.com/nod-ai/AMDSHARK-Studio/blob/main/tank/torch_model_list.csv""", # Please see: https://github.com/nod-ai/AMD-SHARK-Studio/blob/main/tank/torch_model_list.csv""",
# ) # )
# parser.add_argument( # parser.add_argument(
# "--ci_tank_dir", # "--ci_tank_dir",

View File

@@ -396,7 +396,7 @@ class AMDSharkModuleTest(unittest.TestCase):
and device == "rocm" and device == "rocm"
): ):
pytest.xfail( pytest.xfail(
reason="iree-compile buffer limit issue: https://github.com/nod-ai/AMDSHARK-Studio/issues/475" reason="iree-compile buffer limit issue: https://github.com/nod-ai/AMD-SHARK-Studio/issues/475"
) )
if ( if (
config["model_name"] config["model_name"]
@@ -407,7 +407,7 @@ class AMDSharkModuleTest(unittest.TestCase):
and device == "rocm" and device == "rocm"
): ):
pytest.xfail( pytest.xfail(
reason="Numerics issues: https://github.com/nod-ai/AMDSHARK-Studio/issues/476" reason="Numerics issues: https://github.com/nod-ai/AMD-SHARK-Studio/issues/476"
) )
if config["framework"] == "tf" and self.module_tester.batch_size != 1: if config["framework"] == "tf" and self.module_tester.batch_size != 1:
pytest.xfail( pytest.xfail(