mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-08 21:38:04 -05:00
Migration to AMDShark (#2182)
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
This commit is contained in:
committed by
GitHub
parent
dba2c8a567
commit
fe03539901
118
README.md
118
README.md
@@ -1,12 +1,12 @@
|
||||
# SHARK
|
||||
# AMDSHARK
|
||||
|
||||
High Performance Machine Learning Distribution
|
||||
|
||||
<h2>NOTE: This project is not currently maintained.</h2>
|
||||
|
||||
*The latest versions of this project are developments towards a refactor on top of IREE-Turbine. Until further notice, make sure you use an .exe release or a checkout of the `SHARK-1.0` branch, for a working SHARK-Studio*
|
||||
*The latest versions of this project are developments towards a refactor on top of IREE-Turbine. Until further notice, make sure you use an .exe release or a checkout of the `AMDSHARK-1.0` branch, for a working AMDSHARK-Studio*
|
||||
|
||||
[](https://github.com/nod-ai/SHARK-Studio/actions/workflows/nightly.yml)
|
||||
[](https://github.com/nod-ai/AMDSHARK-Studio/actions/workflows/nightly.yml)
|
||||
|
||||
<details>
|
||||
<summary>Prerequisites - Drivers </summary>
|
||||
@@ -25,11 +25,11 @@ Other users please ensure you have your latest vendor drivers and Vulkan SDK fro
|
||||
|
||||
|
||||
|
||||
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
|
||||
### Quick Start for AMDSHARK Stable Diffusion for Windows 10/11 Users
|
||||
|
||||
Install the Driver from [Prerequisites](https://github.com/nod-ai/SHARK-Studio#install-your-hardware-drivers) above
|
||||
Install the Driver from [Prerequisites](https://github.com/nod-ai/AMDSHARK-Studio#install-your-hardware-drivers) above
|
||||
|
||||
Download the [stable release](https://github.com/nod-ai/SHARK-Studio/releases/latest) or the most recent [SHARK 1.0 pre-release](https://github.com/nod-ai/SHARK-Studio/releases).
|
||||
Download the [stable release](https://github.com/nod-ai/AMDSHARK-Studio/releases/latest) or the most recent [AMDSHARK 1.0 pre-release](https://github.com/nod-ai/AMDSHARK-Studio/releases).
|
||||
|
||||
Double click the .exe, or [run from the command line](#running) (recommended), and you should have the [UI](http://localhost:8080/) in the browser.
|
||||
|
||||
@@ -67,16 +67,16 @@ Enjoy.
|
||||
## Check out the code
|
||||
|
||||
```shell
|
||||
git clone https://github.com/nod-ai/SHARK.git
|
||||
cd SHARK
|
||||
git clone https://github.com/nod-ai/AMDSHARK.git
|
||||
cd AMDSHARK
|
||||
```
|
||||
|
||||
## Switch to the Correct Branch (IMPORTANT!)
|
||||
|
||||
Currently SHARK is being rebuilt for [Turbine](https://github.com/iree-org/iree-turbine) on the `main` branch. For now you are strongly discouraged from using `main` unless you are working on the rebuild effort, and should not expect the code there to produce a working application for Image Generation, So for now you'll need switch over to the `SHARK-1.0` branch and use the stable code.
|
||||
Currently AMDSHARK is being rebuilt for [Turbine](https://github.com/iree-org/iree-turbine) on the `main` branch. For now you are strongly discouraged from using `main` unless you are working on the rebuild effort, and should not expect the code there to produce a working application for Image Generation, So for now you'll need switch over to the `AMDSHARK-1.0` branch and use the stable code.
|
||||
|
||||
```shell
|
||||
git checkout SHARK-1.0
|
||||
git checkout AMDSHARK-1.0
|
||||
```
|
||||
|
||||
The following setup instructions assume you are on this branch.
|
||||
@@ -92,7 +92,7 @@ The following setup instructions assume you are on this branch.
|
||||
set-executionpolicy remotesigned
|
||||
```
|
||||
|
||||
#### Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)
|
||||
#### Setup venv and install necessary packages (torch-mlir, nodLabs/AMDShark, ...)
|
||||
```powershell
|
||||
./setup_venv.ps1 #You can re-run this script to get the latest version
|
||||
```
|
||||
@@ -101,20 +101,20 @@ set-executionpolicy remotesigned
|
||||
|
||||
```shell
|
||||
./setup_venv.sh
|
||||
source shark1.venv/bin/activate
|
||||
source amdshark1.venv/bin/activate
|
||||
```
|
||||
|
||||
### Run Stable Diffusion on your device - WebUI
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark1.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
|
||||
(shark1.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py
|
||||
(amdshark1.venv) PS C:\g\amdshark> cd .\apps\stable_diffusion\web\
|
||||
(amdshark1.venv) PS C:\g\amdshark\apps\stable_diffusion\web> python .\index.py
|
||||
```
|
||||
#### Linux / macOS Users
|
||||
```shell
|
||||
(shark1.venv) > cd apps/stable_diffusion/web
|
||||
(shark1.venv) > python index.py
|
||||
(amdshark1.venv) > cd apps/stable_diffusion/web
|
||||
(amdshark1.venv) > python index.py
|
||||
```
|
||||
|
||||
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
|
||||
@@ -128,7 +128,7 @@ source shark1.venv/bin/activate
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark1.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
|
||||
(amdshark1.venv) PS C:\g\amdshark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
|
||||
```
|
||||
|
||||
#### Linux / macOS Users
|
||||
@@ -156,7 +156,7 @@ Here are some samples generated:
|
||||

|
||||
|
||||
|
||||
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
Find us on [AMDSHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
|
||||
|
||||
<details>
|
||||
@@ -168,8 +168,8 @@ This step sets up a new VirtualEnv for Python
|
||||
|
||||
```shell
|
||||
python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
|
||||
python -m venv shark_venv
|
||||
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
|
||||
python -m venv amdshark_venv
|
||||
source amdshark_venv/bin/activate # Use amdshark_venv/Scripts/activate on Windows
|
||||
|
||||
# If you are using conda create and activate a new conda env
|
||||
|
||||
@@ -179,15 +179,15 @@ python -m pip install --upgrade pip
|
||||
|
||||
*macOS Metal* users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install"
|
||||
|
||||
### Install SHARK
|
||||
### Install AMDSHARK
|
||||
|
||||
This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
|
||||
This step pip installs AMDSHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11
|
||||
|
||||
```shell
|
||||
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
pip install nodai-amdshark -f https://nod-ai.github.io/AMDSHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
```
|
||||
|
||||
### Run shark tank model tests.
|
||||
### Run amdshark tank model tests.
|
||||
```shell
|
||||
pytest tank/test_models.py
|
||||
```
|
||||
@@ -196,7 +196,7 @@ See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.
|
||||
### Download and run Resnet50 sample
|
||||
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/AMDSHARK/main/amdshark/examples/amdshark_inference/resnet50_script.py
|
||||
#Install deps for test script
|
||||
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
|
||||
@@ -204,7 +204,7 @@ python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
|
||||
|
||||
### Download and run BERT (MiniLM) sample
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/minilm_jit.py
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/AMDSHARK/main/amdshark/examples/amdshark_inference/minilm_jit.py
|
||||
#Install deps for test script
|
||||
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
|
||||
@@ -222,34 +222,34 @@ Set `USE_IREE=1` to use upstream IREE
|
||||
# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
|
||||
```
|
||||
|
||||
### Run any of the hundreds of SHARK tank models via the test framework
|
||||
### Run any of the hundreds of AMDSHARK tank models via the test framework
|
||||
```shell
|
||||
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
|
||||
python -m amdshark.examples.amdshark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
|
||||
# Or a pytest
|
||||
pytest tank/test_models.py -k "MiniLM"
|
||||
```
|
||||
|
||||
### How to use your locally built IREE / Torch-MLIR with SHARK
|
||||
### How to use your locally built IREE / Torch-MLIR with AMDSHARK
|
||||
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
|
||||
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
|
||||
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
|
||||
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
|
||||
for Torch-MLIR.
|
||||
|
||||
How to use your locally built Torch-MLIR with SHARK:
|
||||
How to use your locally built Torch-MLIR with AMDSHARK:
|
||||
```shell
|
||||
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
|
||||
1.) Run `./setup_venv.sh in AMDSHARK` and activate `amdshark.venv` virtual env.
|
||||
2.) Run `pip uninstall torch-mlir`.
|
||||
3.) Go to your local Torch-MLIR directory.
|
||||
4.) Activate mlir_venv virtual envirnoment.
|
||||
5.) Run `pip uninstall -r requirements.txt`.
|
||||
6.) Run `pip install -r requirements.txt`.
|
||||
7.) Build Torch-MLIR.
|
||||
8.) Activate shark.venv virtual environment from the Torch-MLIR directory.
|
||||
8.) Activate amdshark.venv virtual environment from the Torch-MLIR directory.
|
||||
8.) Run `export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples` in the Torch-MLIR directory.
|
||||
9.) Go to the SHARK directory.
|
||||
9.) Go to the AMDSHARK directory.
|
||||
```
|
||||
Now the SHARK will use your locally build Torch-MLIR repo.
|
||||
Now the AMDSHARK will use your locally build Torch-MLIR repo.
|
||||
|
||||
|
||||
## Benchmarking Dispatches
|
||||
@@ -263,10 +263,10 @@ pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s -
|
||||
```
|
||||
The given command will populate `<dispatch_benchmarks_dir>/<model_name>/` with an `ordered_dispatches.txt` that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.
|
||||
|
||||
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
|
||||
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `AMDSharkInference`, and the benchmarks will be generated when compiled. E.G:
|
||||
|
||||
```
|
||||
shark_module = SharkInference(
|
||||
amdshark_module = AMDSharkInference(
|
||||
mlir_model,
|
||||
device=args.device,
|
||||
mlir_dialect="tm_tensor",
|
||||
@@ -285,34 +285,34 @@ Output will include:
|
||||
- A .txt file containing benchmark output
|
||||
|
||||
|
||||
See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.
|
||||
See tank/README.md for further instructions on how to run model tests and benchmarks from the AMDSHARK tank.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>API Reference</summary>
|
||||
|
||||
### Shark Inference API
|
||||
### AMDShark Inference API
|
||||
|
||||
```
|
||||
|
||||
from shark.shark_importer import SharkImporter
|
||||
from amdshark.amdshark_importer import AMDSharkImporter
|
||||
|
||||
# SharkImporter imports mlir file from the torch, tensorflow or tf-lite module.
|
||||
# AMDSharkImporter imports mlir file from the torch, tensorflow or tf-lite module.
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
mlir_importer = AMDSharkImporter(
|
||||
torch_module,
|
||||
(input),
|
||||
frontend="torch", #tf, #tf-lite
|
||||
)
|
||||
torch_mlir, func_name = mlir_importer.import_mlir(tracing_required=True)
|
||||
|
||||
# SharkInference accepts mlir in linalg, mhlo, and tosa dialect.
|
||||
# AMDSharkInference accepts mlir in linalg, mhlo, and tosa dialect.
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
shark_module = SharkInference(torch_mlir, device="cpu", mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input))
|
||||
from amdshark.amdshark_inference import AMDSharkInference
|
||||
amdshark_module = AMDSharkInference(torch_mlir, device="cpu", mlir_dialect="linalg")
|
||||
amdshark_module.compile()
|
||||
result = amdshark_module.forward((input))
|
||||
|
||||
```
|
||||
|
||||
@@ -320,7 +320,7 @@ result = shark_module.forward((input))
|
||||
### Example demonstrating running MHLO IR.
|
||||
|
||||
```
|
||||
from shark.shark_inference import SharkInference
|
||||
from amdshark.amdshark_inference import AMDSharkInference
|
||||
import numpy as np
|
||||
|
||||
mhlo_ir = r"""builtin.module {
|
||||
@@ -333,22 +333,22 @@ mhlo_ir = r"""builtin.module {
|
||||
|
||||
arg0 = np.ones((1, 4)).astype(np.float32)
|
||||
arg1 = np.ones((4, 1)).astype(np.float32)
|
||||
shark_module = SharkInference(mhlo_ir, device="cpu", mlir_dialect="mhlo")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((arg0, arg1))
|
||||
amdshark_module = AMDSharkInference(mhlo_ir, device="cpu", mlir_dialect="mhlo")
|
||||
amdshark_module.compile()
|
||||
result = amdshark_module.forward((arg0, arg1))
|
||||
```
|
||||
</details>
|
||||
|
||||
## Examples Using the REST API
|
||||
|
||||
* [Setting up SHARK for use with Blender](./docs/shark_sd_blender.md)
|
||||
* [Setting up SHARK for use with Koboldcpp](./docs/shark_sd_koboldcpp.md)
|
||||
* [Setting up AMDSHARK for use with Blender](./docs/amdshark_sd_blender.md)
|
||||
* [Setting up AMDSHARK for use with Koboldcpp](./docs/amdshark_sd_koboldcpp.md)
|
||||
|
||||
## Supported and Validated Models
|
||||
|
||||
SHARK is maintained to support the latest innovations in ML Models:
|
||||
AMDSHARK is maintained to support the latest innovations in ML Models:
|
||||
|
||||
| TF HuggingFace Models | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
| TF HuggingFace Models | AMDSHARK-CPU | AMDSHARK-CUDA | AMDSHARK-METAL |
|
||||
|---------------------|----------|----------|-------------|
|
||||
| BERT | :green_heart: | :green_heart: | :green_heart: |
|
||||
| DistilBERT | :green_heart: | :green_heart: | :green_heart: |
|
||||
@@ -358,12 +358,12 @@ SHARK is maintained to support the latest innovations in ML Models:
|
||||
| Vision Transformer | :green_heart: | :green_heart: | :green_heart: |
|
||||
| ResNet50 | :green_heart: | :green_heart: | :green_heart: |
|
||||
|
||||
For a complete list of the models supported in SHARK, please refer to [tank/README.md](https://github.com/nod-ai/SHARK-Studio/blob/main/tank/README.md).
|
||||
For a complete list of the models supported in AMDSHARK, please refer to [tank/README.md](https://github.com/nod-ai/AMDSHARK-Studio/blob/main/tank/README.md).
|
||||
|
||||
## Communication Channels
|
||||
|
||||
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
|
||||
* [GitHub issues](https://github.com/nod-ai/SHARK-Studio/issues): Feature requests, bugs etc
|
||||
* [AMDSHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the AMDSHARK team and other users
|
||||
* [GitHub issues](https://github.com/nod-ai/AMDSHARK-Studio/issues): Feature requests, bugs etc
|
||||
|
||||
## Related Projects
|
||||
|
||||
@@ -385,10 +385,10 @@ For a complete list of the models supported in SHARK, please refer to [tank/READ
|
||||
* Torch-MLIR Github issues [here](https://github.com/llvm/torch-mlir/issues)
|
||||
* [`torch-mlir` section](https://llvm.discourse.group/c/projects-that-want-to-become-official-llvm-projects/torch-mlir/41) of LLVM Discourse
|
||||
* Weekly meetings on Mondays 9AM PST. See [here](https://discourse.llvm.org/t/community-meeting-developer-hour-refactoring-recurring-meetings/62575) for more information.
|
||||
* [MLIR topic within LLVM Discourse](https://llvm.discourse.group/c/llvm-project/mlir/31) SHARK and IREE is enabled by and heavily relies on [MLIR](https://mlir.llvm.org).
|
||||
* [MLIR topic within LLVM Discourse](https://llvm.discourse.group/c/llvm-project/mlir/31) AMDSHARK and IREE is enabled by and heavily relies on [MLIR](https://mlir.llvm.org).
|
||||
</details>
|
||||
|
||||
## License
|
||||
|
||||
nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions.
|
||||
nod.ai AMDSHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions.
|
||||
See [LICENSE](LICENSE) for more information.
|
||||
|
||||
Reference in New Issue
Block a user