mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-09 22:07:55 -05:00
Migration to AMDShark (#2182)
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
This commit is contained in:
committed by
GitHub
parent
dba2c8a567
commit
fe03539901
61
amdshark/examples/amdshark_inference/minilm_benchmark_tf.py
Normal file
61
amdshark/examples/amdshark_inference/minilm_benchmark_tf.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import tensorflow as tf
|
||||
from transformers import BertModel, BertTokenizer, TFBertModel
|
||||
from amdshark.amdshark_inference import AMDSharkInference
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of 2-dimensional inputs
|
||||
bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class BertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(BertModule, self).__init__()
|
||||
# Create a BERT trainer with the created network.
|
||||
self.m = TFBertModel.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased", from_pt=True
|
||||
)
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m.predict = lambda x, y, z: self.m.call(
|
||||
input_ids=x, attention_mask=y, token_type_ids=z, training=False
|
||||
)
|
||||
|
||||
@tf.function(input_signature=bert_input, jit_compile=True)
|
||||
def forward(self, input_ids, attention_mask, token_type_ids):
|
||||
return self.m.predict(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = BertTokenizer.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
text = "Replace me by any text you'd like."
|
||||
encoded_input = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
)
|
||||
for key in encoded_input:
|
||||
encoded_input[key] = tf.expand_dims(
|
||||
tf.convert_to_tensor(encoded_input[key]), 0
|
||||
)
|
||||
|
||||
test_input = (
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
)
|
||||
amdshark_module = AMDSharkInference(
|
||||
BertModule(), test_input, benchmark_mode=True
|
||||
)
|
||||
amdshark_module.set_frontend("tensorflow")
|
||||
amdshark_module.compile()
|
||||
amdshark_module.benchmark_all(test_input)
|
||||
Reference in New Issue
Block a user