import numpy as np import tensorflow as tf from shark.shark_inference import SharkInference def load_and_preprocess_image(fname: str): image = tf.io.read_file(fname) image = tf.image.decode_image(image, channels=3) image = tf.image.resize(image, (224, 224)) image = image[tf.newaxis, :] # preprocessing pipeline input_tensor = tf.keras.applications.resnet50.preprocess_input(image) return input_tensor data = load_and_preprocess_image("dog_imagenet.jpg").numpy() data.tofile("dog.bin")