Files
SHARK-Studio/amdshark/amdshark_benchmark_runner.py
pdhirajkumarprasad fe03539901 Migration to AMDShark (#2182)
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
2025-11-20 12:52:07 +05:30

502 lines
18 KiB
Python

# Copyright 2020 The Nod Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from amdshark.amdshark_runner import AMDSharkRunner
from amdshark.iree_utils.compile_utils import (
export_iree_module_to_vmfb,
load_flatbuffer,
get_iree_runtime_config,
)
from amdshark.iree_utils.benchmark_utils import (
build_benchmark_args,
run_benchmark_module,
)
from amdshark.parser import amdshark_args
from datetime import datetime
import time
from typing import Optional
import csv
import os
TF_CPU_DEVICE = "/CPU:0"
TF_GPU_DEVICE = "/GPU:0"
def _bytes_to_mb_str(bytes_: Optional[int]) -> str:
return "" if bytes_ is None else f"{bytes_ / 1e6:.6f}"
class OnnxFusionOptions(object):
def __init__(self):
self.disable_gelu = False
self.disable_layer_norm = False
self.disable_attention = False
self.disable_skip_layer_norm = False
self.disable_embed_layer_norm = False
self.disable_bias_skip_layer_norm = False
self.disable_bias_gelu = False
self.enable_gelu_approximation = False
self.use_mask_index = False
self.no_attention_mask = False
def check_requirements(frontend):
import importlib
has_pkgs = False
if frontend == "torch":
tv_spec = importlib.util.find_spec("torchvision")
has_pkgs = tv_spec is not None
elif frontend in ["tensorflow", "tf"]:
keras_spec = importlib.util.find_spec("keras")
tf_spec = importlib.util.find_spec("tensorflow")
has_pkgs = keras_spec is not None and tf_spec is not None
return has_pkgs
class AMDSharkBenchmarkRunner(AMDSharkRunner):
# AMDSharkRunner derived class with Benchmarking capabilities.
def __init__(
self,
mlir_module: bytes,
device: str = "none",
mlir_dialect: str = "linalg",
extra_args: list = [],
):
self.device = amdshark_args.device if device == "none" else device
self.enable_tf32 = amdshark_args.enable_tf32
self.frontend_model = None
self.vmfb_file = None
self.mlir_dialect = mlir_dialect
self.extra_args = extra_args
self.import_args = {}
self.temp_file_to_unlink = None
if not os.path.isfile(mlir_module):
print(
"Warning: Initializing AMDSharkRunner with a mlir string/bytecode object will duplicate the model in RAM at compile time. To avoid this, initialize AMDSharkInference with a path to a MLIR module on your hard disk instead."
)
self.compile_str = True
else:
self.compile_str = False
AMDSharkRunner.__init__(
self,
mlir_module,
device,
self.mlir_dialect,
self.extra_args,
compile_vmfb=False,
)
self.vmfb_file = export_iree_module_to_vmfb(
mlir_module,
device,
".",
self.mlir_dialect,
extra_args=self.extra_args,
compile_str=self.compile_str,
)
params = load_flatbuffer(
self.vmfb_file,
device,
mmap=True,
)
self.iree_compilation_module = params["vmfb"]
self.iree_config = params["config"]
self.temp_file_to_unlink = params["temp_file_to_unlink"]
del params
def setup_cl(self, input_tensors):
self.benchmark_cl = build_benchmark_args(
self.vmfb_file,
self.device,
input_tensors,
mlir_dialect=self.mlir_dialect,
)
def benchmark_frontend(self, modelname):
if self.mlir_dialect in ["linalg", "torch"]:
return self.benchmark_torch(modelname)
elif self.mlir_dialect in ["mhlo", "tf"]:
return self.benchmark_tf(modelname)
def benchmark_torch(self, modelname, device="cpu"):
import torch
from tank.model_utils import get_torch_model
# TODO: Pass this as an arg. currently the best way is to setup with BENCHMARK=1 if we want to use torch+cuda, else use cpu.
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.set_default_device("cuda:0")
# if self.enable_tf32:
# torch.backends.cuda.matmul.allow_tf32 = True
else:
torch.set_default_dtype(torch.float32)
torch.set_default_device("cpu")
torch_device = torch.device("cuda:0" if device == "cuda" else "cpu")
HFmodel, input = get_torch_model(modelname, self.import_args)[:2]
frontend_model = HFmodel.model
frontend_model.to(torch_device)
if device == "cuda":
frontend_model.cuda()
input.to(torch.device("cuda:0"))
print(input)
else:
frontend_model.cpu()
input.cpu()
for i in range(amdshark_args.num_warmup_iterations):
frontend_model.forward(input)
if device == "cuda":
torch.cuda.reset_peak_memory_stats()
begin = time.time()
for i in range(amdshark_args.num_iterations):
out = frontend_model.forward(input)
end = time.time()
if device == "cuda":
stats = torch.cuda.memory_stats()
device_peak_b = stats["allocated_bytes.all.peak"]
frontend_model.to(torch.device("cpu"))
input.to(torch.device("cpu"))
torch.cuda.empty_cache()
else:
device_peak_b = None
print(
f"Torch benchmark:{amdshark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{amdshark_args.num_iterations}"
)
if device == "cuda":
# Set device to CPU so we don't run into segfaults exiting pytest subprocesses.
torch_device = torch.device("cpu")
return [
f"{amdshark_args.num_iterations/(end-begin)}",
f"{((end-begin)/amdshark_args.num_iterations)*1000}",
"", # host_peak_b (CPU usage) is not reported by PyTorch.
_bytes_to_mb_str(device_peak_b),
]
def benchmark_tf(self, modelname):
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
visible_default = tf.config.list_physical_devices("GPU")
try:
tf.config.set_visible_devices([], "GPU")
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != "GPU"
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
from tank.model_utils_tf import get_tf_model
# tf_device = TF_GPU_DEVICE if self.device == "cuda" else TF_CPU_DEVICE
tf_device = TF_CPU_DEVICE
with tf.device(tf_device):
(
model,
input,
) = get_tf_model(
modelname, self.import_args
)[:2]
frontend_model = model
for i in range(amdshark_args.num_warmup_iterations):
frontend_model.forward(*input)
if tf_device == TF_GPU_DEVICE:
tf.config.experimental.reset_memory_stats(tf_device)
begin = time.time()
for i in range(amdshark_args.num_iterations):
out = frontend_model.forward(*input)
end = time.time()
if tf_device == TF_GPU_DEVICE:
memory_info = tf.config.experimental.get_memory_info(tf_device)
device_peak_b = memory_info["peak"]
else:
# tf.config.experimental does not currently support measuring
# CPU memory usage.
device_peak_b = None
print(
f"TF benchmark:{amdshark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{amdshark_args.num_iterations}"
)
return [
f"{amdshark_args.num_iterations/(end-begin)}",
f"{((end-begin)/amdshark_args.num_iterations)*1000}",
"", # host_peak_b (CPU usage) is not reported by TensorFlow.
_bytes_to_mb_str(device_peak_b),
]
def benchmark_c(self):
iter_per_second, host_peak_b, device_peak_b = run_benchmark_module(
self.benchmark_cl
)
print(f"AMDShark-IREE-C benchmark:{iter_per_second} iter/second")
return [
f"{iter_per_second}",
f"{1000/iter_per_second}",
_bytes_to_mb_str(host_peak_b),
_bytes_to_mb_str(device_peak_b),
]
def benchmark_python(self, inputs):
input_list = [x for x in inputs]
for i in range(amdshark_args.num_warmup_iterations):
self.run("forward", input_list)
begin = time.time()
for i in range(amdshark_args.num_iterations):
out = self.run("forward", input_list)
end = time.time()
print(
f"AMDShark-IREE Python benchmark:{amdshark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{amdshark_args.num_iterations}"
)
return [
f"{amdshark_args.num_iterations/(end-begin)}",
f"{((end-begin)/amdshark_args.num_iterations)*1000}",
]
def benchmark_onnx(self, modelname, inputs):
if self.device == "cuda":
print(
"Currently GPU benchmarking on ONNX is not supported in AMDSHARK."
)
return ["N/A", "N/A"]
else:
from onnxruntime.transformers.benchmark import run_onnxruntime
from onnxruntime.transformers.huggingface_models import MODELS
from onnxruntime.transformers.benchmark_helper import (
ConfigModifier,
Precision,
)
import psutil
if modelname == "microsoft/MiniLM-L12-H384-uncased":
modelname = "bert-base-uncased"
if modelname not in MODELS:
print(
f"{modelname} is currently not supported in ORT's HF. Check \
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/huggingface_models.py \
for currently supported models. Exiting benchmark ONNX."
)
return ["N/A", "N/A"]
use_gpu = self.device == "cuda"
num_threads = psutil.cpu_count(logical=False)
batch_sizes = [1]
sequence_lengths = [128]
cache_dir = os.path.join(".", "cache_models")
onnx_dir = os.path.join(".", "onnx_models")
verbose = False
input_counts = [1]
optimize_onnx = True
validate_onnx = False
disable_ort_io_binding = False
use_raw_attention_mask = True
model_fusion_statistics = {}
overwrite = False
model_source = "pt" # Either "pt" or "tf"
provider = None
config_modifier = ConfigModifier(None)
onnx_args = OnnxFusionOptions()
result = run_onnxruntime(
use_gpu,
provider,
(modelname,),
None,
config_modifier,
Precision.FLOAT32,
num_threads,
batch_sizes,
sequence_lengths,
amdshark_args.num_iterations,
input_counts,
optimize_onnx,
validate_onnx,
cache_dir,
onnx_dir,
verbose,
overwrite,
disable_ort_io_binding,
use_raw_attention_mask,
model_fusion_statistics,
model_source,
onnx_args,
)
print(
f"ONNX ORT-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{amdshark_args.num_iterations}"
)
return [
result[0]["QPS"],
result[0]["average_latency_ms"],
]
def get_metadata(self, modelname):
metadata_path = os.path.join(".", "tank", "model_metadata.csv")
with open(metadata_path, mode="r") as csvfile:
torch_reader = csv.reader(csvfile, delimiter=",")
fields = next(torch_reader)
for row in torch_reader:
torch_model_name = row[0]
if torch_model_name == modelname:
param_count = row[3]
model_tags = row[4]
model_notes = row[5]
return [param_count, model_tags, model_notes]
def compare_bench_results(self, baseline: str, result: str):
if baseline is not None:
# Takes a baseline and a result string and calculates a comparison, e.g. "1.04x baseline".
a = float(baseline)
b = float(result)
comparison = a / b
comp_str = f"{round(comparison, 2)}x baseline"
else:
comp_str = "N/A"
return comp_str
def benchmark_all_csv(
self,
inputs: tuple,
modelname,
dynamic,
device_str,
frontend,
import_args,
mode="native",
):
self.setup_cl(inputs)
self.import_args = import_args
self.mode = mode
field_names = [
"model",
"batch_size",
"engine",
"dialect",
"device",
"shape_type",
"data_type",
"iter/sec",
"ms/iter",
"vs. PyTorch/TF",
"iterations",
"param_count",
"tags",
"notes",
"datetime",
"host_memory_mb",
"device_memory_mb",
"measured_host_memory_mb",
"measured_device_memory_mb",
]
# "frontend" must be the first element.
if self.mode == "native":
engines = ["amdshark_python", "amdshark_iree_c"]
if self.mode == "baseline":
engines = ["frontend"]
if self.mode == "all":
engines = ["frontend", "amdshark_python", "amdshark_iree_c"]
if amdshark_args.onnx_bench == True:
engines.append("onnxruntime")
if not os.path.exists("bench_results.csv"):
with open("bench_results.csv", mode="w", newline="") as f:
writer = csv.writer(f)
writer.writerow(field_names)
with open("bench_results.csv", mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=field_names)
bench_info = {}
bench_info["model"] = modelname
bench_info["batch_size"] = str(import_args["batch_size"])
bench_info["dialect"] = self.mlir_dialect
bench_info["iterations"] = amdshark_args.num_iterations
if dynamic == True:
bench_info["shape_type"] = "dynamic"
else:
bench_info["shape_type"] = "static"
bench_info["device"] = device_str
if "fp16" in modelname:
bench_info["data_type"] = "float16"
else:
bench_info["data_type"] = inputs[0].dtype
for e in engines:
engine_result = {}
self.frontend_result = None
if e == "frontend":
engine_result["engine"] = frontend
if check_requirements(frontend):
(
engine_result["iter/sec"],
engine_result["ms/iter"],
engine_result["host_memory_mb"],
engine_result["device_memory_mb"],
) = self.benchmark_frontend(modelname)
self.frontend_result = engine_result["ms/iter"]
engine_result["vs. PyTorch/TF"] = "baseline"
(
engine_result["param_count"],
engine_result["tags"],
engine_result["notes"],
) = self.get_metadata(modelname)
else:
self.frontend_result = None
continue
elif e == "amdshark_python":
engine_result["engine"] = "amdshark_python"
(
engine_result["iter/sec"],
engine_result["ms/iter"],
) = self.benchmark_python(inputs)
engine_result[
"vs. PyTorch/TF"
] = self.compare_bench_results(
self.frontend_result, engine_result["ms/iter"]
)
elif e == "amdshark_iree_c":
engine_result["engine"] = "amdshark_iree_c"
(
engine_result["iter/sec"],
engine_result["ms/iter"],
engine_result["host_memory_mb"],
engine_result["device_memory_mb"],
) = self.benchmark_c()
engine_result[
"vs. PyTorch/TF"
] = self.compare_bench_results(
self.frontend_result, engine_result["ms/iter"]
)
elif e == "onnxruntime":
engine_result["engine"] = "onnxruntime"
(
engine_result["iter/sec"],
engine_result["ms/iter"],
) = self.benchmark_onnx(modelname, inputs)
engine_result["datetime"] = str(datetime.now())
writer.writerow(bench_info | engine_result)