Files
SHARK-Studio/amdshark/torch_mlir_utils.py
pdhirajkumarprasad fe03539901 Migration to AMDShark (#2182)
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
2025-11-20 12:52:07 +05:30

91 lines
2.8 KiB
Python

# Copyright 2020 The Nod Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch_mlir.ir import StringAttr
import torch_mlir
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
import tempfile
from amdshark.parser import amdshark_args
import io
mlir_type_mapping_dict = {
"linalg": torch_mlir.OutputType.LINALG_ON_TENSORS,
"stablehlo": torch_mlir.OutputType.STABLEHLO,
"tosa": torch_mlir.OutputType.TOSA,
}
def get_module_name_for_asm_dump(module):
"""Gets a name suitable for an assembly dump.
The name is not guaranteed to be unique.
"""
if not "torch.debug_module_name" in module.operation.attributes:
return "UnnammedModule"
return StringAttr(
module.operation.attributes["torch.debug_module_name"]
).value
def run_on_refbackend(torch_module, inputs):
backend = refbackend.RefBackendLinalgOnTensorsBackend()
compiled = backend.compile(torch_module)
jit_module = backend.load(compiled)
np_inputs = [x.numpy() for x in inputs]
return jit_module.forward(np_inputs[0])
# Creates dynamic dims for all dims.
# TODO: Pass user specified dynamic dims.
def create_dynamic_placeholders(inputs):
placeholders = []
for inp in inputs:
placeholder = torch_mlir.TensorPlaceholder.like(
inp, dynamic_axes=[i for i in range(len(inp.shape))]
)
placeholders.append(placeholder)
return tuple(placeholders)
def get_torch_mlir_module(
module,
input: tuple,
dynamic: bool,
jit_trace: bool,
return_str: bool = False,
mlir_type: str = "linalg",
):
"""Get the MLIR's linalg-on-tensors module from the torchscipt module."""
ignore_traced_shapes = False
if dynamic:
input = create_dynamic_placeholders(input)
if jit_trace:
ignore_traced_shapes = True
tempfile.tempdir = "."
mlir_module = torch_mlir.compile(
module,
input,
output_type=mlir_type_mapping_dict[mlir_type],
use_tracing=jit_trace,
ignore_traced_shapes=ignore_traced_shapes,
)
if return_str:
return mlir_module.operation.get_asm()
bytecode_stream = io.BytesIO()
mlir_module.operation.write_bytecode(bytecode_stream)
bytecode = bytecode_stream.getvalue()
return bytecode