mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-09 13:57:54 -05:00
4.5 KiB
4.5 KiB
| 1 | model_name | use_tracing | dynamic | param_count | tags | notes | |
|---|---|---|---|---|---|---|---|
| 2 | microsoft/MiniLM-L12-H384-uncased | True | True | 66M | nlp;bert-variant;transformer-encoder | Large version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params) | |
| 3 | albert-base-v2 | True | True | 11M | nlp;bert-variant;transformer-encoder | 12 layers; 128 embedding dim; 768 hidden dim; 12 attention heads; Smaller than BERTbase (11M params vs 109M params); Uses weight sharing to reduce # params but computational cost is similar to BERT. | |
| 4 | bert-base-uncased | True | True | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads | |
| 5 | bert-base-uncased_fp16 | True | True | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads | |
| 6 | bert-base-cased | True | True | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads | |
| 7 | distilbert-base-uncased | True | True | 66M | nlp;bert-variant;transformer-encoder | Smaller and faster than BERT with 97percent retained accuracy. | |
| 8 | google/mobilebert-uncased | True | True | 25M | nlp,bert-variant,transformer-encoder,mobile | 24 layers, 512 hidden size, 128 embedding | |
| 9 | alexnet | False | True | 61M | cnn,parallel-layers | The CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod. | |
| 10 | resnet18 | False | True | 11M | cnn,image-classification,residuals,resnet-variant | 1 7x7 conv2d and the rest are 3x3 conv2d | |
| 11 | resnet50 | False | True | 23M | cnn,image-classification,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) | |
| 12 | resnet50_fp16 | False | True | 23M | cnn,image-classification,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) | |
| 13 | resnet101 | False | True | 29M | cnn,image-classification,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) | |
| 14 | squeezenet1_0 | False | True | 1.25M | cnn,image-classification,mobile,parallel-layers | Parallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat) | |
| 15 | wide_resnet50_2 | False | True | 69M | cnn,image-classification,residuals,resnet-variant | Resnet variant where model depth is decreased and width is increased. | |
| 16 | mobilenet_v3_small | False | True | 2.5M | image-classification,cnn,mobile | N/A | |
| 17 | google/vit-base-patch16-224 | True | False | 86M | image-classification,vision-transformer,transformer-encoder | N/A | |
| 18 | microsoft/resnet-50 | True | False | 23M | image-classification,cnn,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) | |
| 19 | facebook/deit-small-distilled-patch16-224 | True | False | 22M | image-classification,vision-transformer,cnn | N/A | |
| 20 | microsoft/beit-base-patch16-224-pt22k-ft22k | True | False | 86M | image-classification,transformer-encoder,bert-variant,vision-transformer | N/A | |
| 21 | nvidia/mit-b0 | True | False | 3.7M | image-classification,transformer-encoder | SegFormer | |
| 22 | camembert-base | False | False | - | - | - | |
| 23 | dbmdz/convbert-base-turkish-cased | False | False | - | - | - | |
| 24 | google/electra-small-discriminator | False | False | - | - | - | |
| 25 | hf-internal-testing/tiny-random-flaubert | False | False | - | - | - | |
| 26 | funnel-transformer/small | False | False | - | - | - | |
| 27 | microsoft/layoutlm-base-uncased | False | False | - | - | - | |
| 28 | microsoft/mpnet-base | False | False | - | - | - | |
| 29 | roberta-base | False | False | - | - | - | |
| 30 | xlm-roberta-base | False | False | - | - | - | |
| 31 | facebook/convnext-tiny-224 | False | False | - | - | - | |
| 32 | efficientnet-v2-s | False | False | 22M | image-classification,cnn | Includes MBConv and Fused-MBConv | |
| 33 | mnasnet1_0 | False | True | - | cnn, torchvision, mobile, architecture-search | Outperforms other mobile CNNs on Accuracy vs. Latency | |
| 34 | bert-large-uncased | True | True | 330M | nlp;bert-variant;transformer-encoder | 24 layers, 1024 hidden units, 16 attention heads | |
| 35 | t5-base | True | False | 220M | nlp;transformer-encoder;transformer-decoder | Text-to-Text Transfer Transformer | |
| 36 | t5-large | True | False | 770M | nlp;transformer-encoder;transformer-decoder | Text-to-Text Transfer Transformer | |
| 37 | bert-large-uncased | True | hf | True | 330M | nlp;bert-variant;transformer-encoder | 24 layers, 1024 hidden units, 16 attention heads |
| 38 | efficientnet_b0 | True | False | 5.3M | image-classification;cnn;conv2d;depthwise-conv | Smallest EfficientNet variant with 224x224 input | |
| 39 | efficientnet_b7 | True | False | 66M | image-classification;cnn;conv2d;depthwise-conv | Largest EfficientNet variant with 600x600 input | |
| 40 | gpt2 | True | False | 110M | nlp;transformer-decoder;auto-regressive | 12 layers, 768 hidden units, 12 attention heads | |
| 41 | t5-base | True | False | 220M | nlp;transformer-encoder;transformer-decoder | Text-to-Text Transfer Transformer | |
| 42 | t5-large | True | False | 770M | nlp;transformer-encoder;transformer-decoder | Text-to-Text Transfer Transformer |