Files
SHARK-Studio/tank/model_metadata.csv
2023-03-21 10:39:59 +11:00

4.5 KiB

1model_nameuse_tracingdynamicparam_counttagsnotes
2microsoft/MiniLM-L12-H384-uncasedTrueTrue66Mnlp;bert-variant;transformer-encoderLarge version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params)
3albert-base-v2TrueTrue11Mnlp;bert-variant;transformer-encoder12 layers; 128 embedding dim; 768 hidden dim; 12 attention heads; Smaller than BERTbase (11M params vs 109M params); Uses weight sharing to reduce # params but computational cost is similar to BERT.
4bert-base-uncasedTrueTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
5bert-base-uncased_fp16TrueTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
6bert-base-casedTrueTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
7distilbert-base-uncasedTrueTrue66Mnlp;bert-variant;transformer-encoderSmaller and faster than BERT with 97percent retained accuracy.
8google/mobilebert-uncasedTrueTrue25Mnlp,bert-variant,transformer-encoder,mobile24 layers, 512 hidden size, 128 embedding
9alexnetFalseTrue61Mcnn,parallel-layersThe CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod.
10resnet18FalseTrue11Mcnn,image-classification,residuals,resnet-variant1 7x7 conv2d and the rest are 3x3 conv2d
11resnet50FalseTrue23Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
12resnet50_fp16FalseTrue23Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
13resnet101FalseTrue29Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
14squeezenet1_0FalseTrue1.25Mcnn,image-classification,mobile,parallel-layersParallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat)
15wide_resnet50_2FalseTrue69Mcnn,image-classification,residuals,resnet-variantResnet variant where model depth is decreased and width is increased.
16mobilenet_v3_smallFalseTrue2.5Mimage-classification,cnn,mobileN/A
17google/vit-base-patch16-224TrueFalse86Mimage-classification,vision-transformer,transformer-encoderN/A
18microsoft/resnet-50TrueFalse23Mimage-classification,cnn,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
19facebook/deit-small-distilled-patch16-224TrueFalse22Mimage-classification,vision-transformer,cnnN/A
20microsoft/beit-base-patch16-224-pt22k-ft22kTrueFalse86Mimage-classification,transformer-encoder,bert-variant,vision-transformerN/A
21nvidia/mit-b0TrueFalse3.7Mimage-classification,transformer-encoderSegFormer
22camembert-baseFalseFalse---
23dbmdz/convbert-base-turkish-casedFalseFalse---
24google/electra-small-discriminatorFalseFalse---
25hf-internal-testing/tiny-random-flaubertFalseFalse---
26funnel-transformer/smallFalseFalse---
27microsoft/layoutlm-base-uncasedFalseFalse---
28microsoft/mpnet-baseFalseFalse---
29roberta-baseFalseFalse---
30xlm-roberta-baseFalseFalse---
31facebook/convnext-tiny-224FalseFalse---
32efficientnet-v2-sFalseFalse22Mimage-classification,cnnIncludes MBConv and Fused-MBConv
33mnasnet1_0FalseTrue-cnn, torchvision, mobile, architecture-searchOutperforms other mobile CNNs on Accuracy vs. Latency
34bert-large-uncasedTrueTrue330Mnlp;bert-variant;transformer-encoder24 layers, 1024 hidden units, 16 attention heads
35t5-baseTrueFalse220Mnlp;transformer-encoder;transformer-decoderText-to-Text Transfer Transformer
36t5-largeTrueFalse770Mnlp;transformer-encoder;transformer-decoderText-to-Text Transfer Transformer
37bert-large-uncasedTruehfTrue330Mnlp;bert-variant;transformer-encoder24 layers, 1024 hidden units, 16 attention heads
38efficientnet_b0TrueFalse5.3Mimage-classification;cnn;conv2d;depthwise-convSmallest EfficientNet variant with 224x224 input
39efficientnet_b7TrueFalse66Mimage-classification;cnn;conv2d;depthwise-convLargest EfficientNet variant with 600x600 input
40gpt2TrueFalse110Mnlp;transformer-decoder;auto-regressive12 layers, 768 hidden units, 12 attention heads
41t5-baseTrueFalse220Mnlp;transformer-encoder;transformer-decoderText-to-Text Transfer Transformer
42t5-largeTrueFalse770Mnlp;transformer-encoder;transformer-decoderText-to-Text Transfer Transformer