mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-09 05:47:54 -05:00
- fix setup_venv.sh for benchmarks/imports etc. - fix torch benchmarks in SharkBenchmarkRunner - generate SD artifacts using build_tools/stable_diffusion_testing.py and --import_mlir - decouple SD gen from tank/generate_sharktank for now
3.3 KiB
3.3 KiB
| 1 | model_name | use_tracing | model_type | dynamic | mlir_type | decompose | param_count | tags | notes |
|---|---|---|---|---|---|---|---|---|---|
| 2 | efficientnet_b0 | True | vision | False | linalg | False | 5.3M | image-classification;cnn;conv2d;depthwise-conv | Smallest EfficientNet variant with 224x224 input |
| 3 | efficientnet_b7 | True | vision | False | linalg | False | 66M | image-classification;cnn;conv2d;depthwise-conv | Largest EfficientNet variant with 600x600 input |
| 4 | microsoft/MiniLM-L12-H384-uncased | True | hf | True | linalg | False | 66M | nlp;bert-variant;transformer-encoder | Large version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params) |
| 5 | bert-base-uncased | True | hf | True | linalg | False | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads |
| 6 | bert-base-cased | True | hf | True | linalg | False | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads |
| 7 | google/mobilebert-uncased | True | hf | True | linalg | False | 25M | nlp,bert-variant,transformer-encoder,mobile | 24 layers, 512 hidden size, 128 embedding |
| 8 | resnet18 | False | vision | True | linalg | False | 11M | cnn,image-classification,residuals,resnet-variant | 1 7x7 conv2d and the rest are 3x3 conv2d |
| 9 | resnet50 | False | vision | True | linalg | False | 23M | cnn,image-classification,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) |
| 10 | resnet101 | False | vision | True | linalg | False | 29M | cnn,image-classification,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) |
| 11 | squeezenet1_0 | False | vision | True | linalg | False | 1.25M | cnn,image-classification,mobile,parallel-layers | Parallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat) |
| 12 | wide_resnet50_2 | False | vision | True | linalg | False | 69M | cnn,image-classification,residuals,resnet-variant | Resnet variant where model depth is decreased and width is increased. |
| 13 | mobilenet_v3_small | False | vision | True | linalg | False | 2.5M | image-classification,cnn,mobile | N/A |
| 14 | google/vit-base-patch16-224 | True | hf_img_cls | False | linalg | False | 86M | image-classification,vision-transformer,transformer-encoder | N/A |
| 15 | microsoft/resnet-50 | True | hf_img_cls | False | linalg | False | 23M | image-classification,cnn,residuals,resnet-variant | Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks) |
| 16 | facebook/deit-small-distilled-patch16-224 | True | hf_img_cls | False | linalg | False | 22M | image-classification,vision-transformer,cnn | N/A |
| 17 | microsoft/beit-base-patch16-224-pt22k-ft22k | True | hf_img_cls | False | linalg | False | 86M | image-classification,transformer-encoder,bert-variant,vision-transformer | N/A |
| 18 | nvidia/mit-b0 | True | hf_img_cls | False | linalg | False | 3.7M | image-classification,transformer-encoder | SegFormer |
| 19 | mnasnet1_0 | False | vision | True | linalg | False | - | cnn, torchvision, mobile, architecture-search | Outperforms other mobile CNNs on Accuracy vs. Latency |
| 20 | bert-large-uncased | True | hf | True | linalg | False | 330M | nlp;bert-variant;transformer-encoder | 24 layers, 1024 hidden units, 16 attention heads |
| 21 | bert-base-uncased | True | hf | False | stablehlo | False | 109M | nlp;bert-variant;transformer-encoder | 12 layers; 768 hidden; 12 attention heads |
| 22 | gpt2 | True | hf_causallm | False | stablehlo | True | 125M | nlp;transformer-encoder | - |
| 23 | facebook/opt-125m | True | hf | False | stablehlo | True | 125M | nlp;transformer-encoder | - |
| 24 | distilgpt2 | True | hf | False | stablehlo | True | 88M | nlp;transformer-encoder | - |
| 25 | microsoft/deberta-v3-base | True | hf | False | stablehlo | True | 88M | nlp;transformer-encoder | - |