mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-09 13:57:54 -05:00
* Streaming LLM * Update precision and add gpu support * (studio2) Separate weights generation for quantization support * Adapt prompt changes to studio flow * Remove outdated flag from llm compile flags. * (studio2) use turbine vmfbRunner * tweaks to prompts * Update CPU path and llm api test. * Change device in test to cpu. * Fixes to runner, device names, vmfb mgmt * Use small test without external weights.
282 lines
12 KiB
Python
282 lines
12 KiB
Python
from turbine_models.custom_models import stateless_llama
|
|
from turbine_models.model_runner import vmfbRunner
|
|
from turbine_models.gen_external_params.gen_external_params import gen_external_params
|
|
import time
|
|
from shark.iree_utils.compile_utils import compile_module_to_flatbuffer
|
|
from apps.shark_studio.web.utils import get_resource_path
|
|
import iree.runtime as ireert
|
|
from itertools import chain
|
|
import gc
|
|
import os
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
|
|
llm_model_map = {
|
|
"llama2_7b": {
|
|
"initializer": stateless_llama.export_transformer_model,
|
|
"hf_model_name": "meta-llama/Llama-2-7b-chat-hf",
|
|
"compile_flags": ["--iree-opt-const-expr-hoisting=False"],
|
|
"stop_token": 2,
|
|
"max_tokens": 4096,
|
|
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
|
},
|
|
"Trelis/Llama-2-7b-chat-hf-function-calling-v2": {
|
|
"initializer": stateless_llama.export_transformer_model,
|
|
"hf_model_name": "Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
|
"compile_flags": ["--iree-opt-const-expr-hoisting=False"],
|
|
"stop_token": 2,
|
|
"max_tokens": 4096,
|
|
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
|
},
|
|
"TinyPixel/small-llama2": {
|
|
"initializer": stateless_llama.export_transformer_model,
|
|
"hf_model_name": "TinyPixel/small-llama2",
|
|
"compile_flags": ["--iree-opt-const-expr-hoisting=True"],
|
|
"stop_token": 2,
|
|
"max_tokens": 1024,
|
|
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
|
},
|
|
}
|
|
|
|
B_INST, E_INST = "[INST]", "[/INST]"
|
|
B_SYS, E_SYS = "<s>", "</s>"
|
|
|
|
DEFAULT_CHAT_SYS_PROMPT = """<s>[INST] <<SYS>>
|
|
Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n
|
|
"""
|
|
|
|
|
|
def append_user_prompt(history, input_prompt):
|
|
user_prompt = f"{B_INST} {input_prompt} {E_INST}"
|
|
history += user_prompt
|
|
return history
|
|
|
|
|
|
class LanguageModel:
|
|
def __init__(
|
|
self,
|
|
model_name,
|
|
hf_auth_token=None,
|
|
device=None,
|
|
quantization="int4",
|
|
precision="",
|
|
external_weights=None,
|
|
use_system_prompt=True,
|
|
streaming_llm=False,
|
|
):
|
|
self.hf_model_name = llm_model_map[model_name]["hf_model_name"]
|
|
self.device = device.split("=>")[-1].strip()
|
|
self.backend = self.device.split("://")[0]
|
|
self.driver = self.backend
|
|
if "cpu" in device:
|
|
self.device = "cpu"
|
|
self.backend = "llvm-cpu"
|
|
self.driver = "local-task"
|
|
|
|
print(f"Selected {self.backend} as IREE target backend.")
|
|
self.precision = "f32" if "cpu" in device else "f16"
|
|
self.quantization = quantization
|
|
self.safe_name = self.hf_model_name.replace("/", "_").replace("-", "_")
|
|
self.external_weight_file = None
|
|
# TODO: find a programmatic solution for model arch spec instead of hardcoding llama2
|
|
self.file_spec = "_".join(
|
|
[
|
|
self.safe_name,
|
|
self.precision,
|
|
]
|
|
)
|
|
if self.quantization != "None":
|
|
self.file_spec += "_" + self.quantization
|
|
|
|
if external_weights is not None:
|
|
self.external_weight_file = get_resource_path(
|
|
self.file_spec + "." + external_weights
|
|
)
|
|
|
|
if streaming_llm:
|
|
# Add streaming suffix to file spec after setting external weights filename.
|
|
self.file_spec += "_streaming"
|
|
self.streaming_llm = streaming_llm
|
|
|
|
self.tempfile_name = get_resource_path(f"{self.file_spec}.tempfile")
|
|
# TODO: Tag vmfb with target triple of device instead of HAL backend
|
|
self.vmfb_name = get_resource_path(
|
|
f"{self.file_spec}_{self.backend}.vmfb.tempfile"
|
|
)
|
|
self.max_tokens = llm_model_map[model_name]["max_tokens"]
|
|
self.iree_module_dict = None
|
|
self.use_system_prompt = use_system_prompt
|
|
self.global_iter = 0
|
|
self.prev_token_len = 0
|
|
self.first_input = True
|
|
if self.external_weight_file is not None:
|
|
if not os.path.exists(self.external_weight_file):
|
|
print(
|
|
f"External weight file {self.external_weight_file} does not exist. Generating..."
|
|
)
|
|
gen_external_params(
|
|
hf_model_name=self.hf_model_name,
|
|
quantization=self.quantization,
|
|
weight_path=self.external_weight_file,
|
|
hf_auth_token=hf_auth_token,
|
|
precision=self.precision,
|
|
)
|
|
else:
|
|
print(
|
|
f"External weight file {self.external_weight_file} found for {self.vmfb_name}"
|
|
)
|
|
if os.path.exists(self.vmfb_name) and (
|
|
external_weights is None or os.path.exists(str(self.external_weight_file))
|
|
):
|
|
self.runner = vmfbRunner(
|
|
device=self.driver,
|
|
vmfb_path=self.vmfb_name,
|
|
external_weight_path=self.external_weight_file,
|
|
)
|
|
if self.streaming_llm:
|
|
self.model = self.runner.ctx.modules.streaming_state_update
|
|
else:
|
|
self.model = self.runner.ctx.modules.state_update
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.hf_model_name,
|
|
use_fast=False,
|
|
use_auth_token=hf_auth_token,
|
|
)
|
|
elif not os.path.exists(self.tempfile_name):
|
|
self.torch_ir, self.tokenizer = llm_model_map[model_name]["initializer"](
|
|
self.hf_model_name,
|
|
hf_auth_token,
|
|
compile_to="torch",
|
|
external_weights=external_weights,
|
|
precision=self.precision,
|
|
quantization=self.quantization,
|
|
streaming_llm=self.streaming_llm,
|
|
)
|
|
with open(self.tempfile_name, "w+") as f:
|
|
f.write(self.torch_ir)
|
|
del self.torch_ir
|
|
gc.collect()
|
|
self.compile()
|
|
else:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.hf_model_name,
|
|
use_fast=False,
|
|
use_auth_token=hf_auth_token,
|
|
)
|
|
self.compile()
|
|
|
|
def compile(self) -> None:
|
|
# this comes with keys: "vmfb", "config", and "temp_file_to_unlink".
|
|
# ONLY architecture/api-specific compile-time flags for each backend, if needed.
|
|
# hf_model_id-specific global flags currently in model map.
|
|
flags = []
|
|
if "cpu" in self.backend:
|
|
flags.extend(
|
|
[
|
|
"--iree-global-opt-enable-quantized-matmul-reassociation",
|
|
]
|
|
)
|
|
elif self.backend == "vulkan":
|
|
flags.extend(["--iree-stream-resource-max-allocation-size=4294967296"])
|
|
flags.extend(llm_model_map[self.hf_model_name]["compile_flags"])
|
|
flatbuffer_blob = compile_module_to_flatbuffer(
|
|
self.tempfile_name,
|
|
device=self.device,
|
|
frontend="torch",
|
|
model_config_path=None,
|
|
extra_args=flags,
|
|
write_to=self.vmfb_name,
|
|
)
|
|
self.runner = vmfbRunner(
|
|
device=self.driver,
|
|
vmfb_path=self.vmfb_name,
|
|
external_weight_path=self.external_weight_file,
|
|
)
|
|
if self.streaming_llm:
|
|
self.model = self.runner.ctx.modules.streaming_state_update
|
|
else:
|
|
self.model = self.runner.ctx.modules.state_update
|
|
|
|
def sanitize_prompt(self, prompt):
|
|
if isinstance(prompt, list):
|
|
prompt = list(chain.from_iterable(prompt))
|
|
prompt = " ".join([x for x in prompt if isinstance(x, str)])
|
|
prompt = prompt.replace("\n", " ")
|
|
prompt = prompt.replace("\t", " ")
|
|
prompt = prompt.replace("\r", " ")
|
|
if self.use_system_prompt and self.global_iter == 0:
|
|
prompt = append_user_prompt(DEFAULT_CHAT_SYS_PROMPT, prompt)
|
|
print(prompt)
|
|
return prompt
|
|
else:
|
|
print(prompt)
|
|
return f"{B_INST} {prompt} {E_INST}"
|
|
|
|
def chat(self, prompt):
|
|
prompt = self.sanitize_prompt(prompt)
|
|
|
|
input_tensor = self.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
def format_out(results):
|
|
return torch.tensor(results.to_host()[0][0])
|
|
|
|
history = []
|
|
for iter in range(self.max_tokens):
|
|
if self.streaming_llm:
|
|
token_slice = max(self.prev_token_len - 1, 0)
|
|
input_tensor = input_tensor[:, token_slice:]
|
|
if self.streaming_llm and self.model["get_seq_step"]() > 600:
|
|
print("Evicting cache space!")
|
|
self.model["evict_kvcache_space"]()
|
|
token_len = input_tensor.shape[-1]
|
|
device_inputs = [
|
|
ireert.asdevicearray(self.runner.config.device, input_tensor)
|
|
]
|
|
if self.first_input or not self.streaming_llm:
|
|
st_time = time.time()
|
|
token = self.model["run_initialize"](*device_inputs)
|
|
total_time = time.time() - st_time
|
|
token_len += 1
|
|
self.first_input = False
|
|
else:
|
|
st_time = time.time()
|
|
token = self.model["run_cached_initialize"](*device_inputs)
|
|
total_time = time.time() - st_time
|
|
token_len += 1
|
|
|
|
history.append(format_out(token))
|
|
while format_out(token) != llm_model_map["llama2_7b"]["stop_token"]:
|
|
dec_time = time.time()
|
|
if self.streaming_llm and self.model["get_seq_step"]() > 600:
|
|
print("Evicting cache space!")
|
|
self.model["evict_kvcache_space"]()
|
|
token = self.model["run_forward"](token)
|
|
history.append(format_out(token))
|
|
total_time = time.time() - dec_time
|
|
yield self.tokenizer.decode(history), total_time
|
|
|
|
self.prev_token_len = token_len + len(history)
|
|
|
|
if format_out(token) == llm_model_map["llama2_7b"]["stop_token"]:
|
|
break
|
|
|
|
for i in range(len(history)):
|
|
if type(history[i]) != int:
|
|
history[i] = int(history[i])
|
|
result_output = self.tokenizer.decode(history)
|
|
self.global_iter += 1
|
|
return result_output, total_time
|
|
|
|
|
|
if __name__ == "__main__":
|
|
lm = LanguageModel(
|
|
"Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
|
hf_auth_token=None,
|
|
device="cpu-task",
|
|
external_weights="safetensors",
|
|
)
|
|
|
|
print("model loaded")
|
|
for i in lm.chat("hi, what are you?"):
|
|
print(i)
|