Files
SHARK-Studio/tank/examples/MiniLM_tf/huggingface_MiniLM_run.py

95 lines
3.0 KiB
Python

from iree import runtime as ireert
from iree.compiler import tf as tfc
from iree.compiler import compile_str
from absl import app
import numpy as np
import os
import tensorflow as tf
from transformers import BertModel, BertTokenizer, TFBertModel
MAX_SEQUENCE_LENGTH = 512
BATCH_SIZE = 1
# Create a set of 2-dimensional inputs
bert_input = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
]
class BertModule(tf.Module):
def __init__(self):
super(BertModule, self).__init__()
# Create a BERT trainer with the created network.
self.m = TFBertModel.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased", from_pt=True
)
# Invoke the trainer model on the inputs. This causes the layer to be built.
self.m.predict = lambda x, y, z: self.m.call(
input_ids=x, attention_mask=y, token_type_ids=z, training=False
)
@tf.function(input_signature=bert_input, jit_compile=True)
def predict(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)
if __name__ == "__main__":
# Prepping Data
tokenizer = BertTokenizer.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased"
)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
)
for key in encoded_input:
encoded_input[key] = tf.expand_dims(
tf.convert_to_tensor(encoded_input[key]), 0
)
# Compile the model using IREE
compiler_module = tfc.compile_module(
BertModule(), exported_names=["predict"], import_only=True
)
# Compile the model using IREE
backend = "dylib-llvm-aot"
args = [
"--iree-llvmcpu-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]
backend_config = "dylib"
# backend = "cuda"
# backend_config = "cuda"
# args = ["--iree-cuda-llvm-target-arch=sm_80", "--iree-enable-fusion-with-reduction-ops"]
flatbuffer_blob = compile_str(
compiler_module,
target_backends=[backend],
extra_args=args,
input_type="auto",
)
# flatbuffer_blob = compile_str(compiler_module, target_backends=["dylib-llvm-aot"])
# Save module as MLIR file in a directory
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
tracer = ireert.Tracer(os.getcwd())
config = ireert.Config("dylib", tracer)
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
BertCompiled = ctx.modules.module
result = BertCompiled.predict(
encoded_input["input_ids"],
encoded_input["attention_mask"],
encoded_input["token_type_ids"],
)
print(result)