Files
SHARK-Studio/amdshark/examples/amdshark_training/bert_training.py
pdhirajkumarprasad 6d80b43b6b Migration to AMDShark
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
2025-11-20 12:46:36 +05:30

49 lines
1.4 KiB
Python

import torch
from torch.nn.utils import stateless
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from amdshark.amdshark_trainer import AMDSharkTrainer
class MiniLMSequenceClassification(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = AutoModelForSequenceClassification.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased", # The pretrained model.
num_labels=2, # The number of output labels--2 for binary classification.
output_attentions=False, # Whether the model returns attentions weights.
output_hidden_states=False, # Whether the model returns all hidden-states.
torchscript=True,
)
def forward(self, tokens):
return self.model.forward(tokens)[0]
mod = MiniLMSequenceClassification()
def get_sorted_params(named_params):
return [i[1] for i in sorted(named_params.items())]
print(dict(mod.named_buffers()))
inp = (torch.randint(2, (1, 128)),)
def forward(params, buffers, args):
params_and_buffers = {**params, **buffers}
stateless.functional_call(
mod, params_and_buffers, args, {}
).sum().backward()
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
# optim.load_state_dict(optim_state)
optim.step()
return params, buffers
amdshark_module = AMDSharkTrainer(mod, inp)
amdshark_module.compile(forward)
amdshark_module.train(num_iters=2)
print("training done")