mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-08 21:38:04 -05:00
601 lines
19 KiB
Python
601 lines
19 KiB
Python
# Textual-inversion fine-tuning for Stable Diffusion using diffusers
|
|
# This script shows how to "teach" Stable Diffusion a new concept via
|
|
# textual-inversion using 🤗 Hugging Face [🧨 Diffusers library](https://github.com/huggingface/diffusers).
|
|
# By using just 3-5 images you can teach new concepts to Stable Diffusion
|
|
# and personalize the model on your own images.
|
|
|
|
import argparse
|
|
import itertools
|
|
import math
|
|
import os
|
|
import random
|
|
import cv2
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch.utils.data import Dataset
|
|
|
|
import PIL
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import set_seed
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.hub_utils import init_git_repo, push_to_hub
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
YOUR_TOKEN = "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"
|
|
|
|
p = argparse.ArgumentParser(
|
|
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
p.add_argument(
|
|
"--input_dir",
|
|
type=str,
|
|
default="input_images/",
|
|
help="the directory contains the images used for fine tuning",
|
|
)
|
|
p.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="sd_result",
|
|
help="the directory contains the images used for fine tuning",
|
|
)
|
|
p.add_argument(
|
|
"--training_steps",
|
|
type=int,
|
|
default=3000,
|
|
help="the maximum number of training steps",
|
|
)
|
|
p.add_argument("--seed", type=int, default=42, help="the random seed")
|
|
p.add_argument(
|
|
"--what_to_teach",
|
|
type=str,
|
|
choices=["object", "style"],
|
|
default="object",
|
|
help="what is it that you are teaching?",
|
|
)
|
|
p.add_argument(
|
|
"--placeholder_token",
|
|
type=str,
|
|
default="<cat-toy>",
|
|
help="It is the token you are going to use to represent your new concept",
|
|
)
|
|
p.add_argument(
|
|
"--initializer_token",
|
|
type=str,
|
|
default="toy",
|
|
help="It is a word that can summarise what is your new concept",
|
|
)
|
|
p.add_argument(
|
|
"--inference_steps",
|
|
type=int,
|
|
default=50,
|
|
help="the number of steps for inference",
|
|
)
|
|
p.add_argument(
|
|
"--num_inference_samples",
|
|
type=int,
|
|
default=4,
|
|
help="the number of samples for inference",
|
|
)
|
|
p.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
default="a grafitti in a wall with a *s on it",
|
|
help="the text prompt to use",
|
|
)
|
|
args = p.parse_args()
|
|
|
|
if "*s" not in args.prompt:
|
|
raise ValueError(
|
|
f'The prompt should have a "*s" which will be replaced by a placeholder token.'
|
|
)
|
|
|
|
prompt1, prompt2 = args.prompt.split("*s")
|
|
args.prompt = prompt1 + args.placeholder_token + prompt2
|
|
|
|
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
|
|
|
|
# Load input images.
|
|
images = []
|
|
for filename in os.listdir(args.input_dir):
|
|
img = cv2.imread(os.path.join(args.input_dir, filename))
|
|
if img is not None:
|
|
images.append(img)
|
|
|
|
# Setup the prompt templates for training
|
|
imagenet_templates_small = [
|
|
"a photo of a {}",
|
|
"a rendering of a {}",
|
|
"a cropped photo of the {}",
|
|
"the photo of a {}",
|
|
"a photo of a clean {}",
|
|
"a photo of a dirty {}",
|
|
"a dark photo of the {}",
|
|
"a photo of my {}",
|
|
"a photo of the cool {}",
|
|
"a close-up photo of a {}",
|
|
"a bright photo of the {}",
|
|
"a cropped photo of a {}",
|
|
"a photo of the {}",
|
|
"a good photo of the {}",
|
|
"a photo of one {}",
|
|
"a close-up photo of the {}",
|
|
"a rendition of the {}",
|
|
"a photo of the clean {}",
|
|
"a rendition of a {}",
|
|
"a photo of a nice {}",
|
|
"a good photo of a {}",
|
|
"a photo of the nice {}",
|
|
"a photo of the small {}",
|
|
"a photo of the weird {}",
|
|
"a photo of the large {}",
|
|
"a photo of a cool {}",
|
|
"a photo of a small {}",
|
|
]
|
|
|
|
imagenet_style_templates_small = [
|
|
"a painting in the style of {}",
|
|
"a rendering in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"the painting in the style of {}",
|
|
"a clean painting in the style of {}",
|
|
"a dirty painting in the style of {}",
|
|
"a dark painting in the style of {}",
|
|
"a picture in the style of {}",
|
|
"a cool painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a bright painting in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"a good painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a rendition in the style of {}",
|
|
"a nice painting in the style of {}",
|
|
"a small painting in the style of {}",
|
|
"a weird painting in the style of {}",
|
|
"a large painting in the style of {}",
|
|
]
|
|
|
|
|
|
# Setup the dataset
|
|
class TextualInversionDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
data_root,
|
|
tokenizer,
|
|
learnable_property="object", # [object, style]
|
|
size=512,
|
|
repeats=100,
|
|
interpolation="bicubic",
|
|
flip_p=0.5,
|
|
set="train",
|
|
placeholder_token="*",
|
|
center_crop=False,
|
|
):
|
|
self.data_root = data_root
|
|
self.tokenizer = tokenizer
|
|
self.learnable_property = learnable_property
|
|
self.size = size
|
|
self.placeholder_token = placeholder_token
|
|
self.center_crop = center_crop
|
|
self.flip_p = flip_p
|
|
|
|
self.image_paths = [
|
|
os.path.join(self.data_root, file_path)
|
|
for file_path in os.listdir(self.data_root)
|
|
]
|
|
|
|
self.num_images = len(self.image_paths)
|
|
self._length = self.num_images
|
|
|
|
if set == "train":
|
|
self._length = self.num_images * repeats
|
|
|
|
self.interpolation = {
|
|
"linear": PIL.Image.LINEAR,
|
|
"bilinear": PIL.Image.BILINEAR,
|
|
"bicubic": PIL.Image.BICUBIC,
|
|
"lanczos": PIL.Image.LANCZOS,
|
|
}[interpolation]
|
|
|
|
self.templates = (
|
|
imagenet_style_templates_small
|
|
if learnable_property == "style"
|
|
else imagenet_templates_small
|
|
)
|
|
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def __getitem__(self, i):
|
|
example = {}
|
|
image = Image.open(self.image_paths[i % self.num_images])
|
|
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
placeholder_string = self.placeholder_token
|
|
text = random.choice(self.templates).format(placeholder_string)
|
|
|
|
example["input_ids"] = self.tokenizer(
|
|
text,
|
|
padding="max_length",
|
|
truncation=True,
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids[0]
|
|
|
|
# default to score-sde preprocessing
|
|
img = np.array(image).astype(np.uint8)
|
|
|
|
if self.center_crop:
|
|
crop = min(img.shape[0], img.shape[1])
|
|
(
|
|
h,
|
|
w,
|
|
) = (
|
|
img.shape[0],
|
|
img.shape[1],
|
|
)
|
|
img = img[
|
|
(h - crop) // 2 : (h + crop) // 2,
|
|
(w - crop) // 2 : (w + crop) // 2,
|
|
]
|
|
|
|
image = Image.fromarray(img)
|
|
image = image.resize(
|
|
(self.size, self.size), resample=self.interpolation
|
|
)
|
|
|
|
image = self.flip_transform(image)
|
|
image = np.array(image).astype(np.uint8)
|
|
image = (image / 127.5 - 1.0).astype(np.float32)
|
|
|
|
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
|
|
return example
|
|
|
|
|
|
# Setting up the model
|
|
# Load the tokenizer and add the placeholder token as a additional special token.
|
|
# Please read and if you agree accept the LICENSE
|
|
# [here](https://huggingface.co/CompVis/stable-diffusion-v1-4) if you see an error
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="tokenizer",
|
|
use_auth_token=YOUR_TOKEN,
|
|
)
|
|
|
|
# Add the placeholder token in tokenizer
|
|
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
|
|
if num_added_tokens == 0:
|
|
raise ValueError(
|
|
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
|
|
" `placeholder_token` that is not already in the tokenizer."
|
|
)
|
|
|
|
# Get token ids for our placeholder and initializer token.
|
|
# This code block will complain if initializer string is not a single token
|
|
# Convert the initializer_token, placeholder_token to ids
|
|
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
|
|
# Check if initializer_token is a single token or a sequence of tokens
|
|
if len(token_ids) > 1:
|
|
raise ValueError("The initializer token must be a single token.")
|
|
|
|
initializer_token_id = token_ids[0]
|
|
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
|
|
|
|
# Load the Stable Diffusion model
|
|
# Load models and create wrapper for stable diffusion
|
|
text_encoder = CLIPTextModel.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="text_encoder",
|
|
use_auth_token=YOUR_TOKEN,
|
|
)
|
|
vae = AutoencoderKL.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="vae",
|
|
use_auth_token=YOUR_TOKEN,
|
|
)
|
|
unet = UNet2DConditionModel.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="unet",
|
|
use_auth_token=YOUR_TOKEN,
|
|
)
|
|
|
|
# We have added the `placeholder_token` in the `tokenizer` so we resize the token embeddings here,
|
|
# this will a new embedding vector in the token embeddings for our `placeholder_token`
|
|
text_encoder.resize_token_embeddings(len(tokenizer))
|
|
|
|
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data
|
|
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
|
|
|
|
# In Textual-Inversion we only train the newly added embedding vector,
|
|
# so lets freeze rest of the model parameters here.
|
|
|
|
|
|
def freeze_params(params):
|
|
for param in params:
|
|
param.requires_grad = False
|
|
|
|
|
|
# Freeze vae and unet
|
|
freeze_params(vae.parameters())
|
|
freeze_params(unet.parameters())
|
|
# Freeze all parameters except for the token embeddings in text encoder
|
|
params_to_freeze = itertools.chain(
|
|
text_encoder.text_model.encoder.parameters(),
|
|
text_encoder.text_model.final_layer_norm.parameters(),
|
|
text_encoder.text_model.embeddings.position_embedding.parameters(),
|
|
)
|
|
freeze_params(params_to_freeze)
|
|
|
|
# Creating our training data
|
|
|
|
train_dataset = TextualInversionDataset(
|
|
data_root=args.input_dir,
|
|
tokenizer=tokenizer,
|
|
size=512,
|
|
placeholder_token=args.placeholder_token,
|
|
repeats=100,
|
|
learnable_property=args.what_to_teach, # Option selected above between object and style
|
|
center_crop=False,
|
|
set="train",
|
|
)
|
|
|
|
|
|
def create_dataloader(train_batch_size=1):
|
|
return torch.utils.data.DataLoader(
|
|
train_dataset, batch_size=train_batch_size, shuffle=True
|
|
)
|
|
|
|
|
|
# Create noise_scheduler for training.
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
num_train_timesteps=1000,
|
|
tensor_format="pt",
|
|
)
|
|
|
|
# Define hyperparameters for our training
|
|
hyperparameters = {
|
|
"learning_rate": 5e-04,
|
|
"scale_lr": True,
|
|
"max_train_steps": args.training_steps,
|
|
"train_batch_size": 1,
|
|
"gradient_accumulation_steps": 4,
|
|
"seed": args.seed,
|
|
"output_dir": "sd-concept-output",
|
|
}
|
|
|
|
|
|
def training_function(text_encoder, vae, unet):
|
|
logger = get_logger(__name__)
|
|
|
|
train_batch_size = hyperparameters["train_batch_size"]
|
|
gradient_accumulation_steps = hyperparameters[
|
|
"gradient_accumulation_steps"
|
|
]
|
|
learning_rate = hyperparameters["learning_rate"]
|
|
max_train_steps = hyperparameters["max_train_steps"]
|
|
output_dir = hyperparameters["output_dir"]
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
|
)
|
|
|
|
train_dataloader = create_dataloader(train_batch_size)
|
|
|
|
if hyperparameters["scale_lr"]:
|
|
learning_rate = (
|
|
learning_rate
|
|
* gradient_accumulation_steps
|
|
* train_batch_size
|
|
* accelerator.num_processes
|
|
)
|
|
|
|
# Initialize the optimizer
|
|
optimizer = torch.optim.AdamW(
|
|
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
|
|
lr=learning_rate,
|
|
)
|
|
|
|
text_encoder, optimizer, train_dataloader = accelerator.prepare(
|
|
text_encoder, optimizer, train_dataloader
|
|
)
|
|
|
|
# Move vae and unet to device
|
|
vae.to(accelerator.device)
|
|
unet.to(accelerator.device)
|
|
|
|
# Keep vae and unet in eval model as we don't train these
|
|
vae.eval()
|
|
unet.eval()
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(
|
|
len(train_dataloader) / gradient_accumulation_steps
|
|
)
|
|
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# Train!
|
|
total_batch_size = (
|
|
train_batch_size
|
|
* accelerator.num_processes
|
|
* gradient_accumulation_steps
|
|
)
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
|
logger.info(
|
|
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
|
)
|
|
logger.info(
|
|
f" Gradient Accumulation steps = {gradient_accumulation_steps}"
|
|
)
|
|
logger.info(f" Total optimization steps = {max_train_steps}")
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(
|
|
range(max_train_steps), disable=not accelerator.is_local_main_process
|
|
)
|
|
progress_bar.set_description("Steps")
|
|
global_step = 0
|
|
|
|
for epoch in range(num_train_epochs):
|
|
text_encoder.train()
|
|
for step, batch in enumerate(train_dataloader):
|
|
with accelerator.accumulate(text_encoder):
|
|
# Convert images to latent space
|
|
latents = (
|
|
vae.encode(batch["pixel_values"])
|
|
.latent_dist.sample()
|
|
.detach()
|
|
)
|
|
latents = latents * 0.18215
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn(latents.shape).to(latents.device)
|
|
bsz = latents.shape[0]
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(
|
|
0,
|
|
noise_scheduler.num_train_timesteps,
|
|
(bsz,),
|
|
device=latents.device,
|
|
).long()
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(
|
|
latents, noise, timesteps
|
|
)
|
|
|
|
# Get the text embedding for conditioning
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
|
|
|
# Predict the noise residual
|
|
noise_pred = unet(
|
|
noisy_latents, timesteps, encoder_hidden_states
|
|
).sample
|
|
|
|
loss = (
|
|
F.mse_loss(noise_pred, noise, reduction="none")
|
|
.mean([1, 2, 3])
|
|
.mean()
|
|
)
|
|
accelerator.backward(loss)
|
|
|
|
# Zero out the gradients for all token embeddings except the newly added
|
|
# embeddings for the concept, as we only want to optimize the concept embeddings
|
|
if accelerator.num_processes > 1:
|
|
grads = (
|
|
text_encoder.module.get_input_embeddings().weight.grad
|
|
)
|
|
else:
|
|
grads = text_encoder.get_input_embeddings().weight.grad
|
|
# Get the index for tokens that we want to zero the grads for
|
|
index_grads_to_zero = (
|
|
torch.arange(len(tokenizer)) != placeholder_token_id
|
|
)
|
|
grads.data[index_grads_to_zero, :] = grads.data[
|
|
index_grads_to_zero, :
|
|
].fill_(0)
|
|
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
logs = {"loss": loss.detach().item()}
|
|
progress_bar.set_postfix(**logs)
|
|
|
|
if global_step >= max_train_steps:
|
|
break
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Create the pipeline using using the trained modules and save it.
|
|
if accelerator.is_main_process:
|
|
pipeline = StableDiffusionPipeline(
|
|
text_encoder=accelerator.unwrap_model(text_encoder),
|
|
vae=vae,
|
|
unet=unet,
|
|
tokenizer=tokenizer,
|
|
scheduler=PNDMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
skip_prk_steps=True,
|
|
),
|
|
safety_checker=StableDiffusionSafetyChecker.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker"
|
|
),
|
|
feature_extractor=CLIPFeatureExtractor.from_pretrained(
|
|
"openai/clip-vit-base-patch32"
|
|
),
|
|
)
|
|
pipeline.save_pretrained(output_dir)
|
|
# Also save the newly trained embeddings
|
|
learned_embeds = (
|
|
accelerator.unwrap_model(text_encoder)
|
|
.get_input_embeddings()
|
|
.weight[placeholder_token_id]
|
|
)
|
|
learned_embeds_dict = {
|
|
args.placeholder_token: learned_embeds.detach().cpu()
|
|
}
|
|
torch.save(
|
|
learned_embeds_dict, os.path.join(output_dir, "learned_embeds.bin")
|
|
)
|
|
|
|
|
|
import accelerate
|
|
|
|
accelerate.notebook_launcher(
|
|
training_function, args=(text_encoder, vae, unet), num_processes=1
|
|
)
|
|
|
|
# Set up the pipeline
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
hyperparameters["output_dir"],
|
|
# torch_dtype=torch.float16,
|
|
)
|
|
|
|
all_images = []
|
|
for _ in range(args.num_inference_samples):
|
|
images = pipe(
|
|
[args.prompt],
|
|
num_inference_steps=args.inference_steps,
|
|
guidance_scale=7.5,
|
|
).images
|
|
all_images.extend(images)
|
|
|
|
# output_path = os.path.abspath(os.path.join(os.getcwd(), args.output_dir))
|
|
if not os.path.isdir(args.output_dir):
|
|
os.mkdir(args.output_dir)
|
|
|
|
[
|
|
image.save(f"{args.output_dir}/{i}.jpeg")
|
|
for i, image in enumerate(all_images)
|
|
]
|