Files
SHARK-Studio/apps/amdshark_studio/modules/img_processing.py
pdhirajkumarprasad 6d80b43b6b Migration to AMDShark
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
2025-11-20 12:46:36 +05:30

203 lines
7.0 KiB
Python

import os
import re
import json
import torch
import numpy as np
from csv import DictWriter
from PIL import Image, PngImagePlugin
from pathlib import Path
from datetime import datetime as dt
from base64 import decode
resamplers = {
"Lanczos": Image.Resampling.LANCZOS,
"Nearest Neighbor": Image.Resampling.NEAREST,
"Bilinear": Image.Resampling.BILINEAR,
"Bicubic": Image.Resampling.BICUBIC,
"Hamming": Image.Resampling.HAMMING,
"Box": Image.Resampling.BOX,
}
resampler_list = resamplers.keys()
# save output images and the inputs corresponding to it.
def save_output_img(output_img, img_seed, extra_info=None):
from apps.amdshark_studio.web.utils.file_utils import (
get_generated_imgs_path,
get_generated_imgs_todays_subdir,
)
from apps.amdshark_studio.modules.shared_cmd_opts import cmd_opts
if extra_info is None:
extra_info = {}
generated_imgs_path = Path(
get_generated_imgs_path(), get_generated_imgs_todays_subdir()
)
generated_imgs_path.mkdir(parents=True, exist_ok=True)
csv_path = Path(generated_imgs_path, "imgs_details.csv")
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", extra_info["prompt"][0][:15])
out_img_name = f"{dt.now().strftime('%H%M%S')}_{prompt_slice}_{img_seed}"
img_model = extra_info["base_model_id"]
if extra_info["custom_weights"] not in [None, "None"]:
img_model = Path(os.path.basename(extra_info["custom_weights"])).stem
img_vae = None
if extra_info["custom_vae"]:
img_vae = Path(os.path.basename(extra_info["custom_vae"])).stem
img_loras = None
if extra_info["embeddings"]:
img_lora = []
for i in extra_info["embeddings"]:
img_lora += Path(os.path.basename(cmd_opts.use_lora)).stem
img_loras = ", ".join(img_lora)
if cmd_opts.output_img_format == "jpg":
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
output_img.save(out_img_path, quality=95, subsampling=0)
else:
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
pngInfo = PngImagePlugin.PngInfo()
if cmd_opts.write_metadata_to_png:
# Using a conditional expression caused problems, so setting a new
# variable for now.
# if cmd_opts.use_hiresfix:
# png_size_text = (
# f"{cmd_opts.hiresfix_width}x{cmd_opts.hiresfix_height}"
# )
# else:
png_size_text = f"{extra_info['width']}x{extra_info['height']}"
pngInfo.add_text(
"parameters",
f"{extra_info['prompt'][0]}"
f"\nNegative prompt: {extra_info['negative_prompt'][0]}"
f"\nSteps: {extra_info['steps']},"
f"Sampler: {extra_info['scheduler']}, "
f"CFG scale: {extra_info['guidance_scale']}, "
f"Seed: {img_seed},"
f"Size: {png_size_text}, "
f"Model: {img_model}, "
f"VAE: {img_vae}, "
f"LoRA: {img_loras}",
)
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
if cmd_opts.output_img_format not in ["png", "jpg"]:
print(
f"[ERROR] Format {cmd_opts.output_img_format} is not "
f"supported yet. Image saved as png instead."
f"Supported formats: png / jpg"
)
# To be as low-impact as possible to the existing CSV format, we append
# "VAE" and "LORA" to the end. However, it does not fit the hierarchy of
# importance for each data point. Something to consider.
new_entry = {}
new_entry.update(extra_info)
csv_mode = "a" if os.path.isfile(csv_path) else "w"
with open(csv_path, csv_mode, encoding="utf-8") as csv_obj:
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
if csv_mode == "w":
dictwriter_obj.writeheader()
dictwriter_obj.writerow(new_entry)
csv_obj.close()
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
with open(json_path, "w") as f:
json.dump(new_entry, f, indent=4)
# For stencil, the input image can be of any size, but we need to ensure that
# it conforms with our model constraints :-
# Both width and height should be in the range of [128, 768] and multiple of 8.
# This utility function performs the transformation on the input image while
# also maintaining the aspect ratio before sending it to the stencil pipeline.
def resize_stencil(image: Image.Image, width, height, resampler_type=None):
aspect_ratio = width / height
min_size = min(width, height)
if min_size < 128:
n_size = 128
if width == min_size:
width = n_size
height = n_size / aspect_ratio
else:
height = n_size
width = n_size * aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
min_size = min(width, height)
if min_size > 768:
n_size = 768
if width == min_size:
height = n_size
width = n_size * aspect_ratio
else:
width = n_size
height = n_size / aspect_ratio
width = int(width)
height = int(height)
n_width = width // 8
n_height = height // 8
n_width *= 8
n_height *= 8
if resampler_type in resamplers:
resampler = resamplers[resampler_type]
else:
resampler = resamplers["Nearest Neighbor"]
new_image = image.resize((n_width, n_height), resampler=resampler)
return new_image, n_width, n_height
def process_sd_init_image(self, sd_init_image, resample_type):
if isinstance(sd_init_image, list):
images = []
for img in sd_init_image:
img, _ = self.process_sd_init_image(img, resample_type)
images.append(img)
is_img2img = True
return images, is_img2img
if isinstance(sd_init_image, str):
if os.path.isfile(sd_init_image):
sd_init_image = Image.open(sd_init_image, mode="r").convert("RGB")
image, is_img2img = self.process_sd_init_image(sd_init_image, resample_type)
else:
image = None
is_img2img = False
elif isinstance(sd_init_image, Image.Image):
image = sd_init_image.convert("RGB")
elif sd_init_image:
image = sd_init_image["image"].convert("RGB")
else:
image = None
is_img2img = False
if image:
resample_type = (
resamplers[resample_type]
if resample_type in resampler_list
# Fallback to Lanczos
else Image.Resampling.LANCZOS
)
image = image.resize((self.width, self.height), resample=resample_type)
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
image_arr = image_arr / 255.0
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(self.dtype)
image_arr = 2 * (image_arr - 0.5)
is_img2img = True
image = image_arr
return image, is_img2img